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Abstract

In this chapter the recent view about the Kähler-Dirac action (or Kähler-Dirac action) is
explained in more detail.

1. Identification of the Kähler-Dirac action

The most general form of the Kähler-Dirac (or Kähler-Dirac) action involves several terms.
The first one is 4-dimensional assignable to Kähler action. Second term is instanton term
reducible to an expression restricted to wormhole throats or any light-like 3-surfaces parallel
to them in the slicing of space-time surface by light-like 3-surfaces. The third term is a
measurement interaction term linear in Cartan algebra of the isometry group of the imbedding
space in order to obtain stringy propagators and also to realize coupling between the quantum
numbers associated with super-conformal representations and space-time geometry required
by quantum classical correspondence.

This means that 3-D light-like wormhole throats carry induced spinor field which can be
regarded as independent degrees of freedom having the spinor fields at partonic 2-surfaces
as sources and acting as 3-D sources for the 4-D induced spinor field. The most general
measurement interaction would involve the corresponding coupling also for Kähler action but
is not physically motivated. There are good arguments in favor of Chern-Simons Dirac action
and corresponding measurement interaction.

1. Cartan algebra plays a key role not only at quantum level but also at the level of space-
time geometry since quantum critical conserved currents vanish for Cartan algebra of
isometries and the measurement interaction terms giving rise to conserved currents are
possible only for Cartan algebras. Furthermore, Kähler-Dirac equation makes sense only
for eigen states of Cartan algebra generators. The hierarchy of Planck constants realized
in terms of the book like structure of the generalized imbedding space assigns to each
CD (causal diamond) preferred Cartan algebra: in case of Poincare algebra there are
two of them corresponding to linear and cylindrical M4 coordinates.

2. Quantum holography and dimensional reduction hierarchy in which partonic 2-surface de-
fined fermionic sources for 3-D fermionic fields at light-like 3-surfaces Y 3

l in turn defining
fermionic sources for 4-D spinors find an elegant realization. Effective 2-dimensionality is
achieved if the replacement of light-like wormhole throat X3

l with light-like 3-surface Y 3
l

“parallel” with it in the definition of Dirac determinant corresponds to the U(1) gauge
transformation K → K+f+f for Kähler function of WCW so that WCW Kähler metric
is not affected. Here f is holomorphic function of WCW (“world of classical worlds”)
complex coordinates and arbitrary function of zero mode coordinates.

3. An elegant description of the interaction between super-conformal representations re-
alized at partonic 2-surfaces and dynamics of space-time surfaces is achieved since the
values of Cartan charges are feeded to the 3-D Dirac equation which also receives mass
term at the same time. Almost topological QFT at wormhole throats results at the limit
when four-momenta vanish: this is in accordance with the original vision about TGD as
almost topological QFT.

4. A detailed view about the physical role of quantum criticality results. Quantum criti-
cality fixes the values of Kähler coupling strength as the analog of critical temperature.
Quantum criticality implies that second variation of Kähler action vanishes for critical
deformations and the existence of conserved current except in the case of Cartan algebra
of isometries. Quantum criticality allows to fix the values of couplings appearing in the
measurement interaction by using the condition K → K + f + f . p-Adic coupling con-
stant evolution can be understood also and corresponds to scale hierarchy for the sizes
of causal diamonds (CDs).

Criticality is accompanied by conformal invariance and this leads to the proposal that
critical deformations correspond to Kac-Moody type conformal algebra respecting the
light-likeness of the partonic orbits and acting trivially at partonic 2-surfaces. Sub-
algebras of conformal algebras with conformal weights divisible by integer n would act as
gauge symmetries and these algebras would form an inclusion hierarchy defining hierarchy
of symmetry breakings. n would also characterize the value of Planck constant heff =
n× h assignable to various phases of dark matter.

5. The condition that em charge is well-defined for the modes of Kähler-Dirac action implies
that they are in the generic case localized at 2-dimensional surfaces: string world sheets
and perhaps also partonic 2-surfaces. This implies that string model in 4-D space-time
becomes part of TGD.
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6. The inclusion of imaginary instanton term to the definition of the Kähler-Dirac gamma
matrices is not consistent with the conjugation of the induced spinor fields. Measurement
interaction can be however assigned to both Kähler action and possible instanton term.
The CP and T oddness of the instanton part of the measurement interaction term could
provide first level description for CP breaking. Arrow of time means T-breaking too
but the description of dissipation relates to the quantum jumps and to the possibility of
state function reductions take place to either boundary of causal diamond (CD) so that
breaking of the arrow of time and dissipation are the outcome.

Instanton term reduces to Chern-Simons term as does also Kähler action if weak form of
electric-magnetic duality and the condition j ·A = 0 is assumed for Kähler action. Does
this imply that CP breaking results spontaneously as a kind of boundary effect and no
instanton term is needed?

2. Dirac determinant as the exponent of Kähler function?

Although quantum criticality in principle predicts the possible values of Kähler coupling
strength, one might hope that there exists even more fundamental approach involving no cou-
pling constants and predicting even quantum criticality and realizing quantum gravitational
holography. An obvious guess is that vacuum functional identified as exponent of Kähler func-
tion from Euclidian space-time regions and its its imaginary counterpart from Minkowskian
space-time regions can be regarded as Dirac determinant assignable to Kähler-Dirac action.

1. By the localization of the spinor modes to string worlds sheets and possibly also partonic
2-surfaces Dirac determinant should reduce to a product of determinants associated with
these. Thus one would have a product of stringy determinants and there would exist a
machinery for defining them.

Since the Kähler-Dirac operator annihilates the induced spinor fields, it seems that Dirac
determinants must reduce to contributions coming from the “boundaries” of string world
sheets at given space-time sheet. They are closed curves containing light-like curves at
the light-like orbits of partonic 2-surfaces and space-like curves at the ends of space-time
surface at light-like boundaries of causal diamond.

2. The boundary term associated with Kähler-Dirac operator equals to pkγk + Γn, where
pk is the four-momentum assignable to the space-like 3-surface and Γn is Kähler-Dirac
gamma matrix defined as contribution of normal components of the canonical momentum
densities contracted with imbedding space gamma matrices. This operator annihilates
the spinor modes. At the light-like partonic 2-surface Γn annihilate the modes. There
is a strong temptation to define the Dirac determinant as the product of the eigenvalues
of the square of the operator pkγk just as in the case of massless fields. In this case the
determinant should reduce to the square root of the product of the eigenvalues of the
mass squared operator given by stringy mass formula containing only the ground state
conformal weight or rather, its deviation from the required negative half-integer value
required by p-adic mass calculations and made possible by the properties of Γn which is
expected to be time-like as a vector. If this deviation depends on space-time surface, it
can code for the value of Dirac determinant.

3. One can worry about the finiteness of the Dirac determinant: it seems that regular-
ization is required and for vanishing ground state conformal weight one obtains zeta
regularization. In the more general case Taylor expansion as function of deviation is
suggestive.

1 Introduction

Although quantum criticality in principle predicts the possible values of Kähler coupling strength,
one might hope that there exists even more fundamental approach involving no coupling constants
and predicting even quantum criticality and realizing quantum gravitational holography. The Dirac
determinant associated with the Kähler-Dirac action is an excellent candidate in this respect.

The original working hypothesis was that Dirac determinant defines the vacuum functional
of the theory having interpretation as product of the exponent of Kähler function of world of
classical worlds (WCW) identified as Kähler action coming from Euclidian space-time regions and
the exponent of imaginary contribution identified as Kähler action from Minkowskian regions. It
seems however that the most one can demand is that Dirac determinant equals to the exponent of
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Kähler action. The reason is that Kähler-Dirac gamma matrices involving canonical momentum
densities for Kähler action appear in modified (Kähler-Dirac) action.

1.1 What Are The Basic Equations Of Quantum TGD?

A good place to start is to as what might the basic equations of quantum TGD. There are two
kinds of equations at the level of space-time surfaces.

1. Purely classical equations define the dynamics of the space-time sheets as preferred extremals
of Kähler action. Preferred extremals are quantum critical in the sense that second varia-
tion vanishes for critical deformations representing zero modes. This condition guarantees
that corresponding fermionic currents linear in deformations are conserved. There is infinite
hierarchy of these currents and they define fermionic counterparts for zero modes.

Zero energy ontology (ZEO) was motivated by the non-determinism of Kähler action sug-
gesting that it difficult to assign unique preferred extremal to given 3-surface in positive
energy ontology. In ZEO one can consider the possibility that the attribute “preferred” is
not needed in given measurement resolution since the basic objects are now either pairs of
space-like 3-surfaces at the ends of CD or these plus parton orbits (light-like 3-surfaces at
which the signature of the induced metric changes).

2. The purely quantal equations are associated with the representations of various super-conformal
algebras and with the Kähler-Dirac equation. The requirement that there are deformations of
the space-time surface - actually infinite number of them - giving rise to conserved fermionic
charges implies quantum criticality at the level of Kähler action in the sense of critical de-
formations.

3. The precise forms of Kähler action and Kähler Dirac equation at effective and real boundaries
(boundary conditions) are not completely fixed without further input. For Kähler action the
inputs are Lagrange multiplier terms at boundary like 3-surfaces expressing weak form of
electric-magnetic duality and the equality of quantal and classical charges in Cartan algebra
required by quantum classical correspondence (QCC). These states with well-defined classical
charges might correspond to outcomes of state function reduction implying localization in
WCW.

The condition that fermionic propagator is non-trivial forces the addition of Chern-Simons
Dirac term at the partonic orbits at which the signature of the induced metric changes.
Supersymmetry requires the addition of Chern-Simons term at partonic orbits to Kähler
action. This means explicit breaking of CP and T. The effective reduction of both Kähler
and Kähler-Dirac equation to boundary terms means enormous calculational simplification
and is consistent with the vision inspired by twistor approach [K13].

4. At the level of WCW spinor fields describing zero energy states quantal equations involve
also generalized Feynman rules for M -matrix generalizing S-matrix to a “complex square
root” of density matrix and defined by time-like entanglement coefficients between positive
and negative energy parts of zero energy states is certainly the basic goal of quantum TGD.

5. The notion of weak electric-magnetic duality leads to a detailed understanding of how TGD
reduces to almost topological quantum field theory. If Kähler current defines 4-D Beltrami
flow, it is possible to find a gauge in which Coulomb contribution to Kähler action vanishes so
that it reduces to Chern-Simons term. If light-like 3-surfaces and ends of space-time surface
are extremals of Chern-Simons action also effective 2-dimensionality is realized. The condi-
tion that the theory reduces to almost topological QFT and the hydrodynamical character of
field equations leads to a detailed ansatz for the general solution of field equations and also for
the solutions of the modified Dirac equation relying on the notion of Beltrami flow for which
the flow parameter associated with the flow lines defined by a conserved current extends to
a global coordinate. This makes the theory is in well-defined sense completely integrable.
Direct connection with massless theories emerges: every conserved Beltrami currents corre-
sponds to a pair of scalar functions with the first one satisfying massless d’Alembert equation
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in the induced metric. The orthogonality of the gradients of these functions allows interpre-
tation in terms of polarization and momentum directions. The Beltrami flow property can
be also seen as one aspect of quantum criticality since the conserved currents associated with
critical deformations define this kind of pairs.

6. The hierarchy of Planck constants provides also a fresh view to the quantum criticality. The
original justification for the hierarchy of Planck constants came from the indications that
Planck constant could have large values in both astrophysical systems involving dark mat-
ter and also in biology. The realization of the hierarchy in terms of the singular coverings
and possibly also factor spaces of CD and CP2 emerged from consistency conditions. It
however seems that TGD actually predicts this hierarchy of covering spaces. The extreme
non-linearity of the field equations defined by Kähler action means that the correspondence
between canonical momentum densities and time derivatives of the imbedding space co-
ordinates is 1-to-many. This leads naturally to the introduction of the covering space of
CD × CP2, where CD denotes causal diamond defined as intersection of future and past
directed light-cones.

At the level of WCW there is the generalization of the Dirac equation, which can be regarded
as a purely classical Dirac equation. The modified Dirac operators associated with quarks and
leptons carry fermion number but the Dirac equations are well-defined. An orthogonal basis of
solutions of these Dirac operators define in zero energy ontology a basis of zero energy states. The
M -matrices defining entanglement between positive and negative energy parts of the zero energy
state define what can be regarded as analogs of thermal S-matrices. The M-matrices associated
with the solution basis of the WCW Dirac equation define by their orthogonality unitary U-matrix
between zero energy states. This matrix finds the proper interpretation in TGD inspired theory of
consciousness. WCW Dirac equation as the analog of super-Virasoro conditions for the “gamma
fields” of superstring models defining super counterparts of Virasoro generators was the main focus
during earlier period of quantum TGD but has not received so much attention lately and will not
be discussed in this chapter.

Quantum classical correspondence (QCC) requires a coupling between quantum and classical
and this coupling should also give rise to a generalization of quantum measurement theory. The
big question mark is how to realize this coupling.

1. The proposal discussed in this chapter is that the addition of a measurement interaction
term to the Kähler-Dirac action could do the job, solve a handful of problems of quantum
TGD and unify various visions about the physics predicted by quantum TGD. This proposal
implies QCC at the level of Kähler-Dirac action and Kähler action.

2. Another possibility is that QCC is realized at the level of WCW Dirac operator and Kähler-
Dirac operator contains only interior term. The vanishing of the normal component of fermion
current replaces Chern-Simons Dirac operator at various boundary like surfaces. I have pro-
posed that WCW spinor fields with given quantum charges in Cartan algebra are superposi-
tions of space-time surfaces with same classical charges. A stronger form of QCC at the level
of WCW would be that classical correlation functions for various geometric observables are
identical with quantal correlation functions.

QCC could be realized at the level of WCW by putting it in by hand. One can of course
consider also the possibility that the equality of quantal and classical Cartan charges is real-
ized by adding constraint terms realized using Lagrange multipliers at the space-like ends of
space-time surface at the boundaries of CD. This procedure would be very much like the ther-
modynamical procedure used to fix the average energy or particle number of the the system
with Lagrange multipliers identified as temperature or chemical potential. Since quantum
TGD in zero energy ontology (ZEO) can be regarded as square root of thermodynamics, the
procedure looks logically sound.

1.2 Kähler-Dirac Equation For Induced Classical Spinor Fields

The basic vision is that WCW geometry reduces to the second quantization of induced spinor fields.
This means that WCW gamma matrices are linear combinations of fermionic oscillator operators
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and the Dirac determinant equals to vacuum functional of the theory. An unproven conjecture is
that this determinant equals to the exponent of Kähler action for its preferred extremal.

The motivation for the Kähler-Dirac action came from the observation that the counterpart
of the ordinary Dirac equation is internally consistent only if the space-time surfaces are minimal
surfaces. One can however assign to any general coordinate invariant action principle for space-
time surfaces a unique Kähler-Dirac action, which is internally consistent and super-symmetric.
By quantum-classical correspondence space-time geometry must carry information about conserved
quantum charges assignable to partonic 2-surfaces and it took considerable to to realize that this
is achieved via measurement interaction terms realized as Lagrangian multiplier terms stating that
classical conserved charges belonging to Cartan algebra are equal to their quantum counterparts
for the space-time surfaces in quantum suerposition.

Second key idea [K16, K17] is that the well-definedness of em charge eigenvalue for spinor modes
requires their localization to 2-D string world sheets and possibly also partonic 2-surfaces at which
induced W boson field and possibly also Z0 field vanish. Due to the presence of classical W boson
fields this is possible only if localization takes plce at 2-D string world sheets and partonic 2-surfaces.
Therefore string theory like structure emerges as part of TGD. The super Hamiltoanians defined
in terms fluxes of Hammiltonians over partonic 2-surfaces are modified: a super-Hamiltonian at
point of partonic 2-surface is replaced with an integral over stringy curve connecting points of two
partonic 2-surfaces. Boundary conditions for the modes of induced spinor field can be interpreted
as classical correlate for the stringy mass formula.

1.2.1 Preferred extremals as critical extremals

The study of the Kähler-Dirac equation leads to a detailed view about criticality. Quantum
criticality [D2] fixes the values of Kähler coupling strength as the analog of critical temperature.
Quantum criticality implies that second variation of Kähler action vanishes for critical deformations
and the existence of conserved current except in the case of Cartan algebra of isometries. Quantum
criticality allows to fix the values of couplings appearing in the measurement interaction by using
the condition K → K + f + f . p-Adic coupling constant evolution can be understood also and
corresponds to scale hierarchy for the sizes of causal diamonds (CDs).

The discovery that the hierarchy of Planck constants realized in terms of singular covering spaces
of CD × CP2 can be understood in terms of the extremely non-linear dynamics of Kähler action
implying 1-to-many correspondence between canonical momentum densities and time derivatives
of the imbedding space coordinates led to a further very concrete understanding of the criticality
at space-time level and its relationship to zero energy ontology [K6].

Criticality is accompanied by conformal invariance and this leads to the proposal that critical
deformations correspond to Kac-Moody type conformal algebra respecting the light-likeness of the
partonic orbits and acting trivially at partonic 2-surfaces. Sub-algebras of conformal algebras with
conformal weights divisible by integer n would act as gauge symmetries and these algebras would
form an inclusion hierarchy defining hierarchy of symmetry breakings. n would also characterize
the value of Planck constant heff = n× h assignable to various phases of dark matter.

1.2.2 Inclusion of the Chern-Simons Dirac term

Kähler action contains Chern-Simons term cancelling the Chern-Simons contribution of Kähler
action at space-time interior at partonic orbit reducing to Chern-Simons terms so that only the
contribution at space-like ends of space-time surface at the boundaries of causal diamond (CD)
remains.

By supersymmetry also Kähler-Dirac action contains Chern-Simons Dirac term at partonic
orbits implying non-trivial fermionic propagator at the boundaries of string world sheets at which
the spinor modes are localized. The generalized eigenvalues ipkγk of C-S-D operator correspond
to virtual four-momenta.

The inclusion of Chern-Simons term localized at partonic orbits to the definition of Kähler
action and Chern-Simons-Dirac term to the definition Kähler-Dirac action at partonic orbits implies
explicit breaking of CP and T. This term should explain the CP breaking associated with the CKM
matrix of quarks.
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1.3 Dirac Determinant As Exponent Of Kähler Action?

Although quantum criticality in principle predicts the possible values of Kähler coupling strength,
one might hope that there exists even more fundamental approach involving no coupling con-
stants and predicting even quantum criticality and realizing quantum gravitational holography.
An obvious guess is that Dirac determinant equals to the vacuum functional identified as expo-
nent of Kähler function from Euclidian space-time regions and its its imaginary counterpart from
Minkowskian space-time regions. This does not mean that Kähler-Dirac action would be alone
enough as the original dream was. The reason is simple: Kähler-Dirac gamma matrices are defined
in terms of canonical momentum densities of Kähler action.

1. The natural definition of Dirac determinant is as the product of the generalized eigenvalues.
This product makes sense in Clifford algebra and by symmetries must be equal proportional
to unit matrix. One can defined the product also as product of hyper-quaternionic numbers.
The product contains natural IR cutoff posed by the size of the CD involved and UV cutoff
defined by the size of the smalles sub-CD. The hypohtesis that the determinant equals to
exponent of Kähler action forces its finiteness. Dirac determinant depends on string world
sheet. For instance, if one poses periodic boundary conditions the generalized eigenvalues of
C-S-D operator depend on the length of the fermion line measured using the metric defined
by the anticommutators of C-S-D gamma matrices.

2. One can also add to Kähler action 3-D boundary terms defining measurement interaction.
In particular, fixing the classical conserved charges of the space-time surfaces in the quan-
tum superposition. Also Kähler-Dirac action contains measurement interaction term coming
from these terms. In absence of measurement interaction terms Kähler-Dirac equation gives
boundary term ΓnΨ = 0. This equation is satisfied if one has ΓnΨ = pkγkΨ = 0 where
pk is light-like incoming four-momentum. Space-like boundaries correspond to on-mass-shell
states and do not contribute to Dirac determinant.

The appendix of the book gives a summary about basic concepts of TGD with illustrations.
There are concept maps about topics related to the contents of the chapter prepared using CMAP
realized as html files. Links to all CMAP files can be found here [L2]. Another glossary type repre-
sentation involving both pdf and html files can be found at http://tgdtheory.fi/tgdglossary.
pdf. The topics relevant to this chapter are given by the following list.

• TGD as infinite-dimensional geometry [L5]

• WCW spinor fields [L6]

• KD equation [L4]

• Kaehler-Dirac action [L3]

2 Weak Form Electric-Magnetic Duality And Its Implica-
tions

The notion of electric-magnetic duality [B2] was proposed first by Olive and Montonen and is
central in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary
particles are two different phases of theory and that the description in terms of monopoles can be
applied at the limit when the running gauge coupling constant becomes very large and perturbation
theory fails to converge. The notion of electric-magnetic self-duality is more natural since for
CP2 geometry Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric
monopoles and Kähler coupling strength is by quantum criticality renormalization group invariant
rather than running coupling constant. The notion of electric-magnetic (self-)duality emerged
already two decades ago in the attempts to formulate the Kähler geometric of world of classical
worlds. Quite recently a considerable step of progress took place in the understanding of this
notion [K3] . What seems to be essential is that one adopts a weaker form of the self-duality
applying at partonic 2-surfaces. What this means will be discussed in the sequel.

http://tgdtheory.fi/cmaphtml.html
http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/tgdglossary.pdf
http://tgdtheory.fi/webCMAPs/TGD as infinite-dimensional geometry.html
http://tgdtheory.fi/webCMAPs/WCW spinor fields.html
http://tgdtheory.fi/webCMAPs/KD equation.html
http://tgdtheory.fi/webCMAPs/Kaehler-Dirac action.html
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Every new idea must be of course taken with a grain of salt but the good sign is that this con-
cept leads to precise predictions. The point is that elementary particles do not generate monopole
fields in macroscopic length scales: at least when one considers visible matter. The first question is
whether elementary particles could have vanishing magnetic charges: this turns out to be impossi-
ble. The next question is how the screening of the magnetic charges could take place and leads to
an identification of the physical particles as string like objects identified as pairs magnetic charged
wormhole throats connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,−1,−1) and could
be proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that ele-
mentary particles are string like objects: this could become manifest at LHC energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kähler leads
to the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost
topological QFT and that Kähler function is explicitly calculable. This has enormous impact
concerning practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that
all isometry currents are proportional to Kähler current which is integrable in the sense that
the flow parameter associated with its flow lines defines a global coordinate. The proposed
solution ansatz would describe a hydrodynamical flow with the property that isometry charges
are conserved along the flow lines (Beltrami flow). A general ansatz satisfying the integrability
conditions is found.

The strongest form of the solution ansatz states that various classical and quantum currents
flow along flow lines of the Beltrami flow defined by Kähler current. Intuitively this picture
is attractive. A more general ansatz would allow several Beltrami flows meaning multi-
hydrodynamics. The integrability conditions boil down to two scalar functions: the first one
satisfies massless d’Alembert equation in the induced metric and the the gradients of the
scalar functions are orthogonal. The interpretation in terms of momentum and polarization
directions is natural.

2.1 Could A Weak Form Of Electric-Magnetic Duality Hold True?

Holography means that the initial data at the partonic 2-surfaces should fix the WCW metric. A
weak form of this condition allows only the partonic 2-surfaces defined by the wormhole throats
at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Num-
ber theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint
could be enough to fix the initial values of time derivatives of the imbedding space coordinates in
the space-time regions with Minkowskian resp. Euclidian signature of the induced metric. This
is a condition on Kähler-Dirac gamma matrices and hyper-quaternionicity states that they span a
hyper-quaternionic sub-space.

2.1.1 Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.
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1. The expression of the matrix elements of the metric and Kähler form of WCW in terms of
the Kähler fluxes weighted by Hamiltonians of δM4

± at the partonic 2-surface X2 looks very
attractive. These expressions however carry no information about the 4-D tangent space of
the partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory,
which cannot hold true. One would like to code to the WCW metric also information about
the electric part of the induced Kähler form assignable to the complement of the tangent
space of X2 ⊂ X4.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial
manner to get electric magnetic duality at the level of the full theory would be via the
identification of the flux Hamiltonians as sums of of the magnetic and electric fluxes. The
presence of the induced metric is however troublesome since the presence of the induced
metric means that the simple transformation properties of flux Hamiltonians under symplectic
transformations -in particular color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM
theory this duality allows to solve field equations exactly in terms of instantons. This ap-
proach involves also quaternions. These arguments suggest that the duality in some form
might work. The full electric magnetic duality is certainly too strong and implies that space-
time surface at the partonic 2-surface corresponds to piece of CP2 type vacuum extremal
and can hold only in the deep interior of the region with Euclidian signature. In the region
surrounding wormhole throat at both sides the condition must be replaced with a weaker
condition.

4. To formulate a weaker form of the condition let us introduce coordinates (x0, x3, x1, x2)
such (x1, x2) define coordinates for the partonic 2-surface and (x0, x3) define coordinates
labeling partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces
and string world sheets making sense in the regions of space-time sheet with Minkowskian
signature. The assumption about the slicing allows to preserve general coordinate invariance.
The weakest condition is that the generalized Kähler electric fluxes are apart from constant
proportional to Kähler magnetic fluxes. This requires the condition

J03√g4 = KJ12 . (2.1)

A more general form of this duality is suggested by the considerations of [K6] reducing the
hierarchy of Planck constants to basic quantum TGD and also reducing Kähler function for
preferred extremals to Chern-Simons terms [B1] at the boundaries of CD and at light-like
wormhole throats. This form is following

Jnβ
√
g4 = Kε× εnβγδJγδ

√
g4 . (2.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary
of CD or for light-like wormhole throat. ε is a sign factor which is opposite for the two ends of
CD. It could be also opposite of opposite at the opposite sides of the wormhole throat. Note
that the dependence on induced metric disappears at the right hand side and this condition
eliminates the potentials singularity due to the reduction of the rank of the induced metric
at wormhole throat.

5. Information about the tangent space of the space-time surface can be coded to the WCW
metric with loosing the nice transformation properties of the magnetic flux Hamiltonians if
Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Je + Jm = (1 +K)J12 , (2.3)
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where J denotes the Kähler magnetic flux, , makes it possible to have a non-trivial WCW
metric even for K = 0, which could correspond to the ends of a cosmic string like solution
carrying only Kähler magnetic fields. This condition suggests that it can depend only on
Kähler magnetic flux and other symplectic invariants. Whether local symplectic coordinate
invariants are possible at all is far from obvious, If the slicing itself is symplectic invariant
then K could be a non-constant function of X2 depending on string world sheet coordinates.
The light-like radial coordinate of the light-cone boundary indeed defines a symplectically
invariant slicing and this slicing could be shifted along the time axis defined by the tips of
CD.

2.1.2 Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are ob-
tained if one assumes that the quantization of electro-weak charges reduces to this condition at
classical level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to
magnetic flux

Qm =
e

~

∮
BdS = n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology
charge of the partonic 2-surface.

2. The expressions of classical electromagnetic and Z0 fields in terms of Kähler form [L1], [L1]
read as

γ =
eFem
~

= 3J − sin2(θW )R03 ,

Z0 =
gZFZ
~

= 2R03 . (2.4)

Here R03 is one of the components of the curvature tensor in vielbein representation and Fem
and FZ correspond to the standard field tensors. From this expression one can deduce

J =
e

3~
Fem + sin2(θW )

gZ
6~
FZ . (2.5)

3. The weak duality condition when integrated over X2 implies

e2

3~
Qem +

g2Zp

6
QZ,V = K

∮
J = Kn ,

QZ,V =
I3V
2
−Qem , p = sin2(θW ) . (2.6)

Here the vectorial part of the Z0 charge rather than as full Z0 charge QZ = I3L+sin2(θW )Qem
appears. The reason is that only the vectorial isospin is same for left and right handed
components of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths
and using ~ = r~0 one can write

αemQem + p
αZ
2
QZ,V =

3

4π
× rnK ,

αem =
e2

4π~0
, αZ =

g2Z
4π~0

=
αem

p(1− p)
. (2.7)
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4. There is a great temptation to assume that the values of Qem and QZ correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-
surface. The linear coupling of the Kähler-Dirac operator to conserved charges implies cor-
relation between the geometry of space-time sheet and quantum numbers assigned to the
partonic 2-surface. The assumption of standard quantized values for Qem and QZ would
be also seen as the identification of the fine structure constants αem and αZ . This however
requires weak isospin invariance.

2.1.3 The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

1. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler electric
field equals to the Kähler charge gK would give the condition K = g2K/~, where gK is Kähler
coupling constant which should invariant under coupling constant evolution by quantum
criticality. Within experimental uncertainties one has αK = g2K/4π~0 = αem ' 1/137, where
αem is finite structure constant in electron length scale and ~0 is the standard value of Planck
constant.

2. The quantization of Planck constants makes the condition highly non-trivial. The most gen-
eral quantization of r is as rationals but there are good arguments favoring the quantization
as integers corresponding to the allowance of only singular coverings of CD andn CP2. The
point is that in this case a given value of Planck constant corresponds to a finite number
pages of the “Big Book”. The quantization of the Planck constant implies a further quan-
tization of K and would suggest that K scales as 1/r unless the spectrum of values of Qem
and QZ allowed by the quantization condition scales as r. This is quite possible and the
interpretation would be that each of the r sheets of the covering carries (possibly same) el-
ementary charge. Kind of discrete variant of a full Fermi sphere would be in question. The
interpretation in terms of anyonic phases [K10] supports this interpretation.

3. The identification of J as a counterpart of eB/~ means that Kähler action and thus also
Kähler function is proportional to 1/αK and therefore to ~. This implies that for large
values of ~ Kähler coupling strength g2K/4π becomes very small and large fluctuations are
suppressed in the functional integral. The basic motivation for introducing the hierarchy of
Planck constants was indeed that the scaling α → α/r allows to achieve the convergence
of perturbation theory: Nature itself would solve the problems of the theoretician. This of
course does not mean that the physical states would remain as such and the replacement of
single particles with anyonic states in order to satisfy the condition for K would realize this
concretely.

4. The condition K = g2K/~ implies that the Kähler magnetic charge is always accompanied by
Kähler electric charge. A more general condition would read as

K = n× g2K
~
, n ∈ Z . (2.8)

This would apply in the case of cosmic strings and would allow vanishing Kähler charge
possible when the partonic 2-surface has opposite fermion and anti-fermion numbers (for
both leptons and quarks) so that Kähler electric charge should vanish. For instance, for
neutrinos the vanishing of electric charge strongly suggests n = 0 besides the condition that
abelian Z0 flux contributing to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the wormhole
throat. At the Euclidian side much more natural condition is

K =
1

hbar
. (2.9)
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In fact, the self-duality of CP2 Kähler form favours this boundary condition at the Euclidian side
of the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic
charges in Euclidian region since all charges are magnetic can be used to argue in favor of this
form. The same constraint arises from the condition that the action for CP2 type vacuum extremal
has the value required by the argument leading to a prediction for gravitational constant in terms
of the square of CP2 radius and αK the effective replacement g2K → 1 would spoil the argument.

The boundary condition JE = JB for the electric and magnetic parts of Kählwer form at the
Euclidian side of the wormhole throat inspires the question whether all Euclidian regions could
be self-dual so that the density of Kähler action would be just the instanton density. Self-duality
follows if the deformation of the metric induced by the deformation of the canonically imbedded
CP2 is such that in CP2 coordinates for the Euclidian region the tensor (gαβgµν − gανgµβ)/

√
g

remains invariant. This is certainly the case for CP2 type vacuum extremals since by the light-
likeness of M4 projection the metric remains invariant. Also conformal scalings of the induced
metric would satisfy this condition. Conformal scaling is not consistent with the degeneracy of the
4-metric at the wormhole.

2.1.4 Reduction of the quantization of Kähler electric charge to that of electromag-
netic charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based
on the induced Kähler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather
than Kähler charge. This would replace induced Kähler form with electromagnetic field,
which is a linear combination of induced Kahler field and classical Z0 field

γ = 3J − sin2θWR03 ,

Z0 = 2R03 . (2.10)

Here Z0 = 2R03 is the appropriate component of CP2 curvature form [L1]. For a vanishing
Weinberg angle the condition reduces to that for Kähler form.

2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman
diagrams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle
could however vanish. If so, the condition guaranteeing that electromagnetic charge of the
partonic 2-surfaces equals to the above condition stating that the em charge assignable to
the fermion content of the partonic 2-surfaces reduces to the classical Kähler electric flux
at the Minkowskian side of the wormhole throat. One can argue that Weinberg angle must
increase smoothly from a vanishing value at both sides of wormhole throat to its value in the
deep interior of the Euclidian region.

3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical
intuition. Above elementary particle length scales one sees only the classical electric field
reducing to the induced Kähler form and classical Z0 fields and color gauge fields are effec-
tively absent. Only in phases with a large value of Planck constant classical Z0 field and
other classical weak fields and color gauge field could make themselves visible. Cell mem-
brane could be one such system [K11]. This conforms with the general picture about color
confinement and weak massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

1. The value of the Kähler coupling strength mut be very near to the value of the fine structure
constant in electron length scale and these constants can be assumed to be equal.

2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would
naturally correspond to Einstein-Maxwell theory with cosmological constant which is non-
vanishing only in Euclidian regions of space-time so that both Reissner-Nordström metric and
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CP2 are allowed as simplest possible solutions of field equations [K14]. The extremely small
value of the observed cosmological constant needed in GRT type cosmology could be equal
to the large cosmological constant associated with CP2 metric multiplied with the 3-volume
fraction of Euclidian regions.

3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-
Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell
current and of the curvature scalar in Minkowskian regions and curvature scalar + cosmo-
logical constant term in Euclidian regions. The weak form of electric-magnetic duality would
guarantee also now the preferred extremal property and prevent the reduction to a mere
topological QFT.

4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A
non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions
where the approximation as a small deformation of CP2 makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic
view about quantum TGD as following considerations show.

2.2 Magnetic Confinement, The Short Range Of Weak Forces, And
Color Confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it
with some very general empirical facts such as the non-existence of magnetic monopole fields in
macroscopic length scales.

2.2.1 How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale
and one should have a mechanism neutralizing the monopole charge. How electroweak interactions
become short ranged in TGD framework is still a poorly understood problem. What suggests itself
is the neutralization of the weak isospin above the intermediate gauge boson Compton length by
neutral Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be
a wormhole throat. If the magnetically charged wormhole contact is electromagnetically
neutral but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion
only the electromagnetic charge of the fermion is visible on longer length scales. The distance
of this wormhole throat from the fermionic one should be of the order weak boson Compton
length. An interpretation as a bound state of fermion and a wormhole throat state with the
quantum numbers of a neutral Higgs boson would therefore make sense. The neutralizing
throat would have quantum numbers of X−1/2 = νLνR or X1/2 = νLνR. νLνR would
not be neutral Higgs boson (which should correspond to a wormhole contact) but a super-
partner of left-handed neutrino obtained by adding a right handed neutrino. This mechanism
would apply separately to the fermionic and anti-fermionic throats of the gauge bosons and
corresponding space-time sheets and leave only electromagnetic interaction as a long ranged
interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats
feeding gauge fluxes between space-time sheets. It would seem that these wormhole throats
must always appear as pairs such that for the second member of the pair monopole charges
and I3V cancel each other at both space-time sheets involved so that one obtains at both
space-time sheets magnetic dipoles of size of weak boson Compton length. The proposed
magnetic character of fundamental particles should become visible at TeV energies so that
LHC might have surprises in store!
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2.2.2 Well-definedness of electromagnetic charge implies stringiness

Well-definedness of electromagnetic charged at string world sheets carrying spinor modes is very
natural constraint and not trivially satisfied because classical W boson fields are present. As a
matter fact, all weak fields should be effectively absent above weak scale. How this is possible
classical weak fields identified as induced gauge fields are certainly present.

The condition that em charge is well defined for spinor modes implies that the space-time region
in which spinor mode is non-vanishing has 2-D CP2 projection such that the induced W boson
fields are vanishing. The vanishing of classical Z0 field can be poses as additional condition - at
least in scales above weak scale. In the generic case this requires that the spinor mode is restricted
to 2-D surface: string world sheet or possibly also partonic 2-surface. This implies that TGD
reduces to string model in fermionic sector. Even for preferred extremals with 2-D projecting
the modes are expected to allow restriction to 2-surfaces. This localization is possible only for
Kähler-Dirac action.

A word of warning is however in order. The GRT limit or rather limit of TGD as Einstein
Yang-Mills theory replaces the sheets of many-sheeted space-time with Minkowski space with
effective metric obtained by summing to Minkowski metric the deviations of the induced metrics
of space-time sheets from Minkowski metric. For gauge potentials a similar identification applies.
YM-Einstein equations coupled with matter and with non-vanishing cosmological constant are
expected on basis of Poincare invariance. One cannot exclude the possibility that the sums of
weak gauge potentials from different space-time sheet tend to vanish above weak scale and that
well-definedness of em charge at classical level follows from the effective absence of classical weak
gauge fields.

2.2.3 Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and
quarks) do not vanish and they form color and magnetic singles in the hadronic length scale. This
would mean that magnetic charges of the state q±1/2 − X∓1/2 representing the physical quark
would not vanish and magnetic confinement would accompany also color confinement. This would
explain why free quarks are not observed. To how degree then quark confinement corresponds to
magnetic confinement is an interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be
opposite and meson would correspond to a Kähler magnetic flux so that a stringy view about
meson emerges. For valence quarks of baryon the vanishing of the net magnetic charge takes
place provided that the magnetic net charges are (±2,∓1,∓1). This brings in mind the spectrum
of color hyper charges coming as (±2,∓1,∓1)/3 and one can indeed ask whether color hyper-
charge correlates with the Kähler magnetic charge. The geometric picture would be three strings
connected to single vertex. Amusingly, the idea that color hypercharge could be proportional to
color hyper charge popped up during the first year of TGD when I had not yet discovered CP2

and believed on M4 × S2.
p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark

variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of

√
2 in the most

general case. The dark variants of the particle would have the same mass as the original one. In
particular, Mersenne primes Mk = 2k − 1 and Gaussian Mersennes MG,k = (1 + i)k − 1 has been
proposed to define zoomed copies of these physics. At the level of magnetic confinement this would
mean hierarchy of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime M89 should define a scaled up variant of
the ordinary hadron physics with mass scaled up roughly by a factor 2(107−89)/2 = 512. The size
scale of color confinement for this physics would be same as the weal length scale. It would look
more natural that the weak confinement for the quarks of M89 physics takes place in some shorter
scale and M61 is the first Mersenne prime to be considered. The mass scale of M61 weak bosons
would be by a factor 2(89−61)/2 = 214 higher and about 1.6 × 104 TeV. M89 quarks would have
virtually no weak interactions but would possess color interactions with weak confinement length
scale reflecting themselves as new kind of jets at collisions above TeV energies.
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In the biologically especially important length scale range 10 nm -2500 nm there are as many
as four scaled up electron Compton lengths Le(k) =

√
5L(k): they are associated with Gaussian

Mersennes MG,k, k = 151, 157, 163, 167. This would suggest that the existence of scaled up scales
of magnetic-, weak- and color confinement. An especially interesting possibly testable prediction is
the existence of magnetic monopole pairs with the size scale in this range. There are recent claims
about experimental evidence for magnetic monopole pairs [D1].

2.2.4 Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one
recalls that electric-magnetic duality in super-symmetric quantum field theories means that the
descriptions in terms of particles and monopoles are in some sense dual descriptions. Fermions
would be replaced by string like objects defined by the magnetic flux tubes and bosons as pairs
of wormhole contacts would correspond to pairs of the flux tubes. Therefore the sharp distinction
between gravitons and physical particles would disappear.

The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and
anti-fermions at the wormhole throat but these do not give rise to graviton like states [K5]. The
upper and lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion
pairs with sum over all fermions. The reason is that otherwise one cannot realize graviton emission
in terms of joining of the ends of light-like 3-surfaces together. Also now magnetic monopole
charges are necessary but now there is no need to assign the entities X± with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime M127. It is however difficult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology
could allow some very simple description allowing perhaps to get rid of the problematic aspects of
Feynman diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy
ontology. A highly attractive assumption is that the particles appearing at wormhole throats
are on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass shell
momenta. For virtual bosons they the wormhole throats would have opposite sign of energy
and the sum of on mass shell states would give virtual net momenta. This would make
possible twistor description of virtual particles allowing only massless particles (in 4-D sense
usually and in 8-D sense in TGD framework). The notion of virtual fermion makes sense
only if one assumes in the interaction region a topological condensation creating another
wormhole throat having no fermionic quantum numbers.

2. The addition of the particles X± replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X±1/2.
The members of these pairs would correspond to 3-D light-like surfaces glued together at the
vertices of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of
the string to form shorter strings but the replication of the entire string to form two strings
with same length or fusion of two strings to single string along all their points rather than
along ends to form a longer string. It is not clear whether the duality symmetry of stringy
diagrams can hold true for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X±? Should one
describe the state as superposition of non-parallel on mass shell states so that the composite
state would be automatically massive? The description as superposition of on mass shell
states does not conform with the idea that bound state formation requires binding energy.



2.3 Could Quantum TGD Reduce To Almost Topological QFT? 17

In TGD framework the notion of negentropic entanglement has been suggested to make
possible the analogs of bound states consisting of on mass shell states so that the binding
energy is zero [K7]. If this kind of states are in question the description of virtual states in
terms of on mass shell states is not lost. Of course, one cannot exclude the possibility that
there is infinite number of this kind of states serving as analogs for the excitations of string
like object.

4. What happens to the states formed by fermions and X±1/2 in the internal lines of the
Feynman diagram? Twistor philosophy suggests that only the higher on mass shell excitations
are possible. If this picture is correct, the situation would not change in an essential manner
from the earlier one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles
should have stringy character in electro-weak length scales and could behaving to become manifest
at LHC energies. This adds one further item to the list of non-trivial predictions of TGD about
physics at LHC energies [K8].

2.3 Could Quantum TGD Reduce To Almost Topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces
to almost topological quantum theory in the sense that the counterpart of Chern-Simons action as-
signed with the wormhole throats somehow dictates the dynamics. This proposal can be formulated
also for the Kähler-Dirac action action. I gave up this proposal but the following argument shows
that Kähler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons
action plus Coulomb term.

1. Kähler action density can be written as a 4-dimensional integral of the Coulomb term jαKAα
plus and integral of the boundary term JnβAβ

√
g4 over the wormhole throats and of the

quantity J0βAβ
√
g4 over the ends of the 3-surface.

2. If the self-duality conditions generalize to Jnβ = 4παKε
nβγδJγδ at throats and to J0β =

4παKε
0βγδJγδ at the ends, the Kähler function reduces to the counterpart of Chern-Simons

action evaluated at the ends and throats. It would have same value for each branch and the
replacement ~0 → r~0 would effectively describe this. Boundary conditions would however
give 1/r factor so that ~ would disappear from the Kähler function! The original attempt to
realize quantum TGD as an almost topological QFT was in terms of Chern-Simons action
but was given up. It is somewhat surprising that Kähler action gives Chern-Simons action
in the vacuum sector defined as sector for which Kähler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to
an almost topological QFT. The attribute “almost” would come from the fact that one has non-
vanishing classical Noether charges defined by Kähler action and non-trivial quantum dynamics in
M4 degrees of freedom. One could also assign to space-time surfaces conserved four-momenta which
is not possible in topological QFTs. For this reason the conditions guaranteeing the vanishing of
Coulomb interaction term deserve a detailed analysis.

1. For the known extremals jαK either vanishes or is light-like (“massless extremals” for which
weak self-duality condition does not make sense [K2] ) so that the Coulomb term vanishes
identically in the gauge used. The addition of a gradient to A induces terms located at the
ends and wormhole throats of the space-time surface but this term must be cancelled by the
other boundary terms by gauge invariance of Kähler action. This implies that the M4 part of
WCW metric vanishes in this case. Therefore massless extremals as such are not physically
realistic: wormhole throats representing particles are needed.

2. The original naive conclusion was that since Chern-Simons action depends on CP2 coor-
dinates only, its variation with respect to Minkowski coordinates must vanish so that the
WCW metric would be trivial in M4 degrees of freedom. This conclusion is in conflict with
quantum classical correspondence and was indeed too hasty. The point is that the allowed
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variations of Kähler function must respect the weak electro-magnetic duality which relates
Kähler electric field depending on the induced 4-metric at 3-surface to the Kähler magnetic
field. Therefore the dependence on M4 coordinates creeps via a Lagrange multiplier term

∫
Λα(Jnα −KεnαβγJβ gamma)

√
g4d

3x . (2.11)

The (1, 1) part of second variation contributing to M4 metric comes from this term.

3. This erratic conclusion about the vanishing of M4 part WCW metric raised the question
about how to achieve a non-trivial metric in M4 degrees of freedom. The proposal was
a modification of the weak form of electric-magnetic duality. Besides CP2 Kähler form
there would be the Kähler form assignable to the light-cone boundary reducing to that for
rM = constant sphere - call it J1. The generalization of the weak form of self-duality
would be Jnβ = εnβγδK(Jγδ + εJ1

γδ). This form implies that the boundary term gives a

non-trivial contribution to the M4 part of the WCW metric even without the constraint
from electric-magnetic duality. Kähler charge is not affected unless the partonic 2-surface
contains the tip of CD in its interior. In this case the value of Kähler charge is shifted by a
topological contribution. Whether this term can survive depends on whether the resulting
vacuum extremals are consistent with the basic facts about classical gravitation.

4. The Coulombic interaction term is not invariant under gauge transformations. The good
news is that this might allow to find a gauge in which the Coulomb term vanishes. The
vanishing condition fixing the gauge transformation φ is

jαK∂αφ = −jαAα . (2.12)

This differential equation can be reduced to an ordinary differential equation along the flow
lines jK by using dxα/dt = jαK . Global solution is obtained only if one can combine the flow
parameter t with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate differential
is proportional to the covariant form of Kähler current: dt = φjK . This condition in turn
implies d2t = d(φjK) = d(φjK) = dφ ∧ jK + φdjK = 0 implying jK ∧ djK = 0 or more
concretely,

εαβγδjKβ ∂γj
K
delta = 0 . (2.13)

jK is a four-dimensional counterpart of Beltrami field [B4] and could be called generalized
Beltrami field.

The integrability conditions follow also from the construction of the extremals of Kähler
action [K2]. The conjecture was that for the extremals the 4-dimensional Lorentz force
vanishes (no dissipation): this requires jK ∧ J = 0. One manner to guarantee this is the
topologization of the Kähler current meaning that it is proportional to the instanton current:
jK = φjI , where jI = ∗(J ∧A) is the instanton current, which is not conserved for 4-D CP2

projection. The conservation of jK implies the condition jαI ∂αφ = ∂αj
αφ and from this φ can

be integrated if the integrability condition jI∧djI = 0 holds true implying the same condition
for jK . By introducing at least 3 or CP2 coordinates as space-time coordinates, one finds that
the contravariant form of jI is purely topological so that the integrability condition fixes the
dependence on M4 coordinates and this selection is coded into the scalar function φ. These
functions define families of conserved currents jαKφ and jαI φ and could be also interpreted as
conserved currents associated with the critical deformations of the space-time surface.

5. There are gauge transformations respecting the vanishing of the Coulomb term. The vanish-
ing condition for the Coulomb term is gauge invariant only under the gauge transformations
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A→ A+∇φ for which the scalar function the integral
∫
jαK∂αφ reduces to a total divergence

a giving an integral over various 3-surfaces at the ends of CD and at throats vanishes. This
is satisfied if the allowed gauge transformations define conserved currents

Dα(jαφ) = 0 . (2.14)

As a consequence Coulomb term reduces to a difference of the conserved charges Qeφ =∫
j0φ
√
g4d

3x at the ends of the CD vanishing identically. The change of the Chern-Simons
type term is trivial if the total weighted Kähler magnetic flux Qmφ =

∑∫
JφdA over wormhole

throats is conserved. The existence of an infinite number of conserved weighted magnetic
fluxes is in accordance with the electric-magnetic duality. How these fluxes relate to the flux
Hamiltonians central for WCW geometry is not quite clear.

6. The gauge transformations respecting the reduction to almost topological QFT should have
some special physical meaning. The measurement interaction term in the Kähler-Dirac in-
teraction corresponds to a critical deformation of the space-time sheet and is realized as
an addition of a gauge part to the Kähler gauge potential of CP2. It would be natural to
identify this gauge transformation giving rise to a conserved charge so that the conserved
charges would provide a representation for the charges associated with the infinitesimal criti-
cal deformations not affecting Kähler action. The gauge transformed Kähler gauge potential
couples to the Kähler-Dirac equation and its effect could be visible in the value of Kähler
function and therefore also in the properties of the preferred extremal. The effect on WCW
metric would however vanish since K would transform only by an addition of a real part of
a holomorphic function.

7. A first guess for the explicit realization of the quantum classical correspondence between
quantum numbers and space-time geometry is that the deformation of the preferred ex-
tremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of δCD × CP2 generating the gauge transfor-
mation represented by φ. This interpretation makes sense if the fluxes defined by Qmφ and
corresponding Hamiltonians affect only zero modes rather than quantum fluctuating degrees
of freedom.

8. Later a simpler proposal assuming Kähler action with Chern-Simons term at partonic orbits
and Kähler-Dirac action with 1-D Dirac action in induced metric at partonic orbits emerged.
Measurement interaction terms would correspond to Lagrange multiplier terms at the ends
of space-time surface fixing the values of classical conserved charges to their quantum values.
Super-symmetry requires the assignment of this kind of term also to Kähler-Dirac action as
boundary term.

Kähler-Dirac equation gives rise to a boundary condition at space-like ends of the space-
time surface stating that the action of the Kähler-Dirac gamma matrix in normal direction
annihilates the spinor modes. The normal vector would be light-like and the value of the
incoming on mass shell four-momentum would be coded to the geometry of the space-time
surface and string world sheet.

9. In order to obtain non-trivial fermion propagator one must add to Dirac action 1-D Dirac
action in induced metric with the boundaries of string world sheets at the light-like parton
orbits. Its bosonic counterpart is line-length in induced metric. Field equations imply that
the boundaries are light-like geodesics and fermion has light-like 8-momentum. This suggests
strongly a connection with quantum field theory and an 8-D generalization of twistor Grass-
mannian approach. By field equations the bosonic part of this action does not contribute
to the Kähler action. Chern-Simons Dirac terms to which Kähler action reduces could be
responsible for the breaking of CP and T symmetries as they appear in CKM matrix.

To sum up, one could understand the basic properties of WCW metric in this framework. Effec-
tive 2-dimensionality would result from the existence of an infinite number of conserved charges in
two different time directions (genuine conservation laws plus gauge fixing). The infinite-dimensional
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symmetric space for given values of zero modes corresponds to the Cartesian product of the WCW
s associated with the partonic 2-surfaces at both ends of CD and the generalized Chern-Simons
term decomposes into a sum of terms from the ends giving single particle Kähler functions and
to the terms from light-like wormhole throats giving interaction term between positive and nega-
tive energy parts of the state. Hence Kähler function could be calculated without any knowledge
about the interior of the space-time sheets and TGD would reduce to almost topological QFT as
speculated earlier. Needless to say this would have immense boost to the program of constructing
WCW Kähler geometry.

3 Some Attempts To Understand Preferred Extremals Of
Kähler action

Preferred extremal of Kähler action has remained one of the basic poorly defined notions of TGD.
There are pressing motivations for understanding what “preferred” really means. For instance,
the conformal invariance of string models naturally generalizes to 4-D invariance defined by quan-
tum Yangian of quantum affine algebra (Kac-Moody type algebra) characterized by two complex
coordinates and therefore explaining naturally the effective 2-dimensionality [K13].

Preferred extremals are space-time surfaces connecting two space-like 3-surfaces at the ends of
space-time surfaces at boundaries of causal diamond (CD). A natural looking condition is that the
symplectic Noether charges associated with a sub-algebra of symplectic algebra with conformal
weights n-multiples of the weights of the entire algebra vanish for preferred extremals. These
conditions would be classical counterparts the the condition that super-symplectic sub-algebra
annihilates the physical states.

4 Handful Of Problems With A Common Resolution

Theory building could be compared to pattern recognition or to a solving a crossword puzzle. It
is essential to make trials, even if one is aware that they are probably wrong. When stares long
enough to the letters which do not quite fit, one suddenly realizes what one particular crossword
must actually be and it is soon clear what those other crosswords are. In the following I describe
an example in which this analogy is rather concrete.

I will first summarize the problems of ordinary Dirac action based on induced gamma matrices
and propose Kähler-Dirac action (or Kähler Dirac action as solution). After that I will describe the
general structures of Kähler action and Kähler Dirac action. The non-trivial terms are associated to
3-D boundary like surfaces - that is ends of space-time surface inside CD and light-like 3-surfaces
at which the signature of the induced metric changes. These terms are induced as Lagrange
multiplier terms guaranteeing weak form of E-M duality and quantum classical correspondence
(QCC) between classical and quantal Cartan charges. The condition guaranteeing that Chern-
Simons Dirac propagator reduces to ordinary massless Dirac propagator must be however assumed
as a property of the modes of Kähler Dirac equation rather than forced by a separate term in the
Kähler-Dirac action as thought originally.

4.1 Why Kähler-Dirac Action?

4.1.1 Problems associated with the ordinary Dirac action

In the following the problems of the ordinary Dirac action are discussed and the notion of Kähler-
Dirac action is introduced.

Minimal 2-surface represents a situation in which the representation of surface reduces to a
complex-analytic map. This implies that induced metric is hermitian so that it has no diagonal
components in complex coordinates (z, z) and the second fundamental form has only diagonal
components of type Hk

zz. This implies that minimal surface is in question since the trace of the
second fundamental form vanishes. At first it seems that the same must happen also in the more
general case with the consequence that the space-time surface is a minimal surface. Although
many basic extremals of Kähler action are minimal surfaces, it seems difficult to believe that
minimal surface property plus extremization of Kähler action could really boil down to the absolute
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minimization of Kähler action or some other general principle selecting preferred extremals as Bohr
orbits [K3, K12].

This brings in mind a similar long-standing problem associated with the Dirac equation for the
induced spinors. The problem is that right-handed neutrino generates super-symmetry only pro-
vided that space-time surface and its boundary are minimal surfaces. Although one could interpret
this as a geometric symmetry breaking, there is a strong feeling that something goes wrong. In-
duced Dirac equation and super-symmetry fix the variational principle but this variational principle
is not consistent with Kähler action.

One can also question the implicit assumption that Dirac equation for the induced spinors
is consistent with the super-symmetry of the WCW geometry. Super-symmetry would obviously
require that for vacuum extremals of Kähler action also induced spinor fields represent vacua. This
is however not the case. This super-symmetry is however assumed in the construction of WCW
geometry so that there is internal inconsistency.

4.1.2 Super-symmetry forces Kähler-Dirac equation

The above described three problems have a common solution. Nothing prevents from starting
directly from the hypothesis of a super-symmetry generated by covariantly constant right-handed
neutrino and finding a Dirac action which is consistent with this super-symmetry. Field equations
can be written as

DαT
α
k = 0 ,

Tαk =
∂

∂hkα
LK . (4.1)

If super-symmetry is present one can assign to this current its super-symmetric counterpart

Jαk = νRΓkTαl ΓlΨ ,

DαJ
αk = 0 . (4.2)

having a vanishing divergence. The isometry currents currents and super-currents are obtained by
contracting Tαk and Jαk with the Killing vector fields of super-symmetries. Note also that the
super current

Jα = νRT
α
l ΓlΨ (4.3)

has a vanishing divergence.
By using the covariant constancy of the right-handed neutrino spinor, one finds that the diver-

gence of the super current reduces to

DαJ
αk = νRΓkTαl ΓlDαΨ .

(4.4)

The requirement that this current vanishes is guaranteed if one assumes that Kähler-Dirac equation

Γ̂αDαΨ = 0 ,

Γ̂α = Tαl Γl . (4.5)

This equation must be derivable from a Kähler-Dirac action. It indeed is. The action is given by

L = ΨΓ̂αDαΨ . (4.6)

Thus the variational principle exists. For this variational principle induced gamma matrices are
replaced with effective induced gamma matrices and the requirement
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DµΓ̂µ = 0 (4.7)

guaranteeing that super-symmetry is identically satisfied if the bosonic field equations are satis-
fied. For the ordinary Dirac action this condition would lead to the minimal surface property.
What sounds strange that the essentially hydrodynamical equations defined by Kähler action have
fermionic counterpart: this is very far from intuitive expectations raised by ordinary Dirac equation
and something which one might not guess without taking super-symmetry very seriously.

4.1.3 How can one avoid minimal surface property?

These observations suggest how to avoid the emergence of the minimal surface property as a
consequence of field equations. It is not induced metric which appears in field equations. Rather,
the effective metric appearing in the field equations is defined by the anti-commutators of γ̂µ

ĝµν = {Γ̂µ, Γ̂ν} = 2T kµTνk . (4.8)

Here the index raising and lowering is however performed by using the induced metric so that
the problems resulting from the non-invertibility of the effective metric are avoided. It is this
dynamically generated effective metric which must appear in the number theoretic formulation of
the theory.

Field equations state that space-time surface is minimal surface with respect to the effective
metric. Note that a priori the choice of the bosonic action principle is arbitrary. The requirement
that effective metric defined by energy momentum tensor has only non-diagonal components except
in the case of non-light-like coordinates, is satisfied for the known solutions of field equations.

4.1.4 Does the Kähler-Dirac action define the fundamental action principle?

There is quite fundamental and elegant interpretation of the modified Dirac action as a fundamental
action principle discussed also in [K12]. In this approach vacuum functional can be defined as the
Grassmannian functional integral associated with the exponent of the Kähler-Dirac action. This
definition is invariant with respect to the scalings of the Dirac action so that theory contains no
free parameters.

An alternative definition is as a Dirac determinant which might be calculated in TGD framework
without applying the poorly defined functional integral. There are good reasons to expect that the
Dirac determinant equals to the exponent of Kähler function for a preferred Bohr orbit like extremal
of the Kähler action with the value of Kähler coupling strength coming out as a prediction. Hence
the dynamics of the modified Dirac action at light-like partonic 3-surfaces X3

l , even when restricted
to almost-topological dynamics induced by Chern-Simons action, would dictate the dynamics at
the interior of the space-time sheet.

The knowledge of the symplectic currents and super-currents, together with the anti-commutation
relations stating that the fermionic super-currents SA and SB associated with HamiltoniansHA and
HB anti-commute to a bosonic current H[A,B], allows in principle to deduce the anti-commutation
relations satisfied by the induced spinor field. In fact, these conditions replace the usual anti-
commutation relations used to quantize free spinor field. Since the normal ordering of the Dirac
action would give Kähler action,

Kähler coupling strength would be determined completely by the anti-commutation relations
of the super-symplectic algebra. Kähler coupling strength would be dynamical and the selection
of preferred extremals of Kähler action would be more or less equivalent with quantum criticality
because criticality corresponds to conformal invariance and the hyper-quaternionic version of the
super-conformal invariance results only for the extrema of Kähler action. p-Adic (or possibly
more general) coupling constant evolution and quantum criticality would come out as a prediction
whereas in the case that Kähler action is introduced as primary object, the value of Kähler coupling
strength must be fixed by quantum criticality hypothesis.

The mixing of the M4 chiralities of the imbedding space spinors serves as a signal for particle
massivation and breaking of super-conformal symmetry. The induced gamma matrices for the
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space-time surfaces which are deformations of M4 indeed contain a small contribution from CP2

gamma matrices: this implies a mixing of M4 chiralities even for the Kähler-Dirac action so that
there is no need to introduce this mixing by hand.

4.2 Overall View About Kähler Action And Kähler Dirac Action

In the following the most recent view about Kähler action and the Kähler-Dirac action (Kähler-
Dirac action) is explained in more detail. The proposal is one of the many that I have considered.

1. The minimal formulation involves in the bosonic case only 4-D Kähler action. The action
could contain also Chern-Simons boundary term localized to partonic orbits at which the
signature of the induced metric changes. The coefficient of Chern-Simons term could be
chosen so that this contribution to bosonic action cancels the Chern-Simons term coming
from Kähler action (by weak form of electric-magnetic duality) so that for preferred extremals
Kähler action reduces to Chern-Simons terms at the ends of space-time surface at boundaries
of causal diamond (CD). For Euclidian wormhole contacts Chern-Simons term need not
reduce to a mere boundary terms since the gauge potential is not globally defined. One
can also consider the possibility that only Minkowskian regions involve the Chern-Simons
boundary term. One can also argue that Chern-Simons term is actually an un-necessary
complication not needed in the recent interpretation of TGD.

There are constraint terms expressing weak form of electric-magnetic duality and constraints
forcing the total quantal charges for Kähler-Dirac action in Cartan algebra to be identical
with total classical charges for Kähler action. This realizes quantum classical correspondence.
The constraints do not affect quantum fluctuating degrees of freedom if classical charges
parametrize zero modes so that the localization to a quantum superposition of space-time
surfaces with same classical charges is possible.

The vanishing of conformal Noether charges for sub-algebras of various conformal algebras
are also posed. They could be also realized as Lagrange multiplied terms at the ends of
3-surface.

2. By supersymmetry requirement the Kähler-Dirac action corresponding to the bosonic action
is obtained by associating to the various pieces in the bosonic action canonical momentum
densities and contracting them with imbedding space gamma matrices to obtain K-D gamma
matrices. This gives rise to Kähler-Dirac equation in the interior of space-time surface. As
explained, it is assumed that localiztion to 2-D string world sheets occurs. At the light-like
boundaries the limit of K-D equation gives K-D equation at the ferminonic liness expressing
8-D light-likeness or 4-D light-likeness in effective metric.

4.2.1 Lagrange multiplier terms in Kähler action

Weak form of E-M duality can be realized by adding to Kähler action 3-D constraint terms realized
in terms of Lagrange multipliers.

Quantum classical correspondence (QCC) is the principle motivating further additional terms
in Kähler action.

1. QCC suggests a correlation between 4-D geometry of space-time sheet and quantum numbers.
This could result if the classical charges in Cartan algebra are identical with the quantal ones
assignable to Kähler-Dirac action. This would give very powerful constraint on the allowed
space-time sheets in the superposition of space-time sheets defining WCW spinor field. An
even strong condition would be that classical correlation functions are equal to quantal ones.

2. The equality of quantal and classical Cartan charges could be realized by adding constraint
terms realized using Lagrange multipliers at the space-like ends of space-time surface at the
boundaries of CD. This procedure would be very much like the thermodynamical procedure
used to fix the average energy or particle number of the the system using Lagrange multipliers
identified as temperature or chemical potential. Since quantum TGD can be regarded as
square root of thermodynamics in zero energy ontology (ZEO), the procedure looks logically
sound.
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4.2.2 Boundary terms for Kähler-Dirac action

Weak form of E-M duality implies the reduction of Kähler action to Chern-Simons terms for
preferred extremals satisfying j ·A = 0 (contraction of Kähler current and Kähler gauge potential
vanishes). One obtains Chern-Simons terms at space-like 3-surfaces at the ends of space-time
surface at boundaries of causal diamond and at light-like 3-surfaces defined by parton orbits having
vanishing determinant of induced 4-metric. The naive guess has been that consistency requires
Kähler-Dirac-Chern Simons equation at partonic orbits. This is however a mere guess and need
not be correct.

One should try to make first clear what one really wants.

1. What one wants are generalized Feynman diagrams demanding massless Dirac propagators
in 8-D sense at the light-like boundaries of string world sheets interpreted as fermionic lines
of generalized Feynman diagrams. This gives hopes that 8-D generalization of the twistor
Grassmannian approach works. The localization of spinors at string world sheets is crucial
for achieving this.

In ordinary QFT fermionic propagator results from the kinetic term in Dirac action. Could
the situation be same also now at the boundary of string world sheet associated with parton
orbit? One can consider the Dirac action

Lind =

∫
ΨΓtind∂tΨ

√
g1dt

defined by the induced gamma matrix Γtind and induced 1-metric. This action need to be
associated only to the Minkowskian side of the space-surface. By supersymmetry Dirac
action must be accompanied by a bosonic action

∫ √
g1dt. It forces the boundary line to be

a geodesic line. Dirac equation gives

ΓtindDtΨ = ipk(M8)γkΨ = 0 .

The square of the Dirac operator gives (Γtind)
2 = 0 for geodesic lines (the components of the

second fundamental form vanish) so that one obtains 8-D light-likeness.

Boundary line would behave like point-like elementary particle for which conserved 8-momentum
is conserved and light-like: just as twistor diagrammatics suggests. 8-momentum must be
real since otherwise the particle orbit would belong to the complexification of H. These con-
ditions can be regarded as boundary conditions on the string world sheet and spinor modes.
There would be no additional contribution to the Kähler action.

2. The special points are the ends of the fermion lines at incoming and outgoing partonic
2-surfaces and at these points M4 mass squared is assigned to the imbedding space spinor
harmonic associated with the incoming fermion. CP2 mass squared corresponds to the eigen-
value of CP2 spinor d’Alembertian for the spinor harmonic.

At the end of the fermion line p(M4)k corresponds to the incoming fermionic four-momentum.
The direction of p(E4)k is not fixed and one has SO(4) harmonic at the mass shell p(E4)2 =
m2, m the mass of the incoming particle. At imbedding space level color partial waves
correspond to SO(4) partial waves (SO(4) could be seen as the symmetry group of low
energy hadron physics giving rise to vectorial and axial isospin).

4.2.3 Constraint terms at space-like ends of space-time surface

There are constraint terms coming from the condition that weak form of electric-magnetic duality
holds true and also from the condition that classical charges for the space-time sheets in the
superposition are identical with quantal charges which are net fermionic charges assignable to the
strings.

These terms give additional contribution to the algebraic equation ΓnΨ = 0 making in partial
differential equation reducing to ordinary differential equation if induced spinor fields are local-
ized at 2-D surfaces. These terms vanish if Ψ is covariantly constant along the boundary of the
string world sheet so that fundamental fermions remain massless. By 1-dimensionality covariant
constancy can be always achieved.
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4.3 A Connection With Quantum Measurement Theory

It is encouraging that isometry charges and also other charges could make themselves visible in the
geometry of space-time surface as they should by quantum classical correspondence. This suggests
an interpretation in terms of quantum measurement theory.

1. The interpretation resolves the problem caused by the fact that the choice of the commut-
ing isometry charges is not unique. Cartan algebra corresponds naturally to the measured
observables. For instance, one could choose the Cartan algebra of Poincare group to consist
of energy and momentum, angular momentum and boost (velocity) in particular direction
as generators of the Cartan algebra of Poincare group. In fact, the choices of a preferred
plane M2 ⊂M4 and geodesic sphere S2 ⊂ CP2 allowing to fix the measurement sub-algebra
to a high degree are implied by the replacement of the imbedding space with a book like
structure forced by the hierarchy of Planck constants. Therefore the hierarchy of Planck
constants seems to be required by quantum measurement theory. One cannot overemphasize
the importance of this connection.

2. One can add similar couplings of the net values of the measured observables to the cur-
rents whose existence and conservation is guaranteed by quantum criticality. It is essential
that one maps the observables to Cartan algebra coupled to critical current characterizing
the observable in question. The coupling should have interpretation as a replacement of
the induced Kähler gauge potential with its gauge transform. Quantum classical correspon-
dence encourages the identification of the classical charges associated with Kähler action with
quantal Cartan charges. This would support the interpretation in terms of a measurement
interaction feeding information to classical space-time physics about the eigenvalues of the
observables of the measured system. The resulting field equations remain second order par-
tial differential equations since the second order partial derivatives appear only linearly in
the added terms.

3. What about the space-time correlates of electro-weak charges? The earlier proposal explains
this correlation in terms of the properties of quantum states: the coupling of electro-weak
charges to Chern-Simons term could give the correlation in stationary phase approximation.
It would be however very strange if the coupling of electro-weak charges with the geometry
of the space-time sheet would not have the same universal description based on quantum
measurement theory as isometry charges have.

(a) The hint as how this description could be achieved comes from a long standing un-
answered question motivated by the fact that electro-weak gauge group identifiable as
the holonomy group of CP2 can be identified as U(2) subgroup of color group. Could
the electro-weak charges be identified as classical color charges? This might make sense
since the color charges have also identification as fermionic charges implied by quantum
criticality. Or could electro-weak charges be only represented as classical color charges
by mapping them to classical color currents in the measurement interaction term in the
Kähler-Dirac action? At least this question might make sense.

(b) It does not make sense to couple both electro-weak and color charges to the same fermion
current. There are also other fundamental fermion currents which are conserved. All
the following currents are conserved.

Jα = ΨOΓ̂αΨ

O ∈ {1 , J ≡ JklΣkl , ΣAB , ΣABJ} . (4.9)

Here Jkl is the covariantly constant CP2 Kähler form and ΣAB is the (also covariantly)
constant sigma matrix of M4 (flatness is absolutely essential).

(c) Electromagnetic charge can be expressed as a linear combination of currents correspond-
ing to O = 1 and O = J and vectorial isospin current corresponds to J . It is natural
to couple of electromagnetic charge to the the projection of Killing vector field of color
hyper charge and coupling it to the current defined by Oem = a + bJ . This allows to
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interpret the puzzling finding that electromagnetic charge can be identified as anoma-
lous color hyper-charge for induced spinor fields made already during the first years
of TGD. There exist no conserved axial isospin currents in accordance with CVC and
PCAC hypothesis which belong to the basic stuff of the hadron physics of old days.

(d) Color charges would couple naturally to lepton and quark number current and the U(1)
part of electro-weak charges to the n = 1 multiple of quark current and n = 3 multiple
of the lepton current (note that leptons resp. quarks correspond to t = 0 resp. t = ±1
color partial waves). If electro-weak resp. couplings to H-chirality are proportional to
1 resp. Γ9, the fermionic currents assigned to color and electro-weak charges can be
regarded as independent. This explains why the possibility of both vectorial and axial
couplings in 8-D sense does not imply the doubling of gauge bosons.

(e) There is also an infinite variety of conserved currents obtained as the quantum critical
deformations of the basic fermion currents identified above. This would allow in principle
to couple an arbitrary number of observables to the geometry of the space-time sheet by
mapping them to Cartan algebras of Poincare and color group for a particular conserved
quantum critical current. Quantum criticality would therefore make possible classical
space-time correlates of observables necessary for quantum measurement theory.

(f) The coupling constants associated with the deformations would appear in the couplings.
Quantum criticality (K → K + f + f condition) should predict the spectrum of these
couplings. In the case of momentum the coupling would be proportional to

√
G/~0=

kR/~0 and k ∼ 211 should follow from quantum criticality. p-Adic coupling constant
evolution should follow from the dependence on the scale of CD coming as powers of 2.

4. Quantum criticality implies fluctuations in long length and time scales and it is not surpris-
ing that quantum criticality is needed to produce a correlation between quantal degrees of
freedom and macroscopic degrees of freedom. Note that quantum classical correspondence
can be regarded as an abstract form of entanglement induced by the entanglement between
quantum charges QA and fermion number type charges assignable to zero modes.

5. Space-time sheets can have an arbitrary number of wormhole contacts so that the interpre-
tation in terms of measurement theory coupling short and long length scales suggests that
the measurement interaction terms are localizable at the wormhole throats. This would fa-
vor Chern-Simons term or possibly instanton term if reducible to Chern-Simons terms. The
breaking of CP and T might relate to the fact that state function reductions performed in
quantum measurements indeed induce dissipation and breaking of time reversal invariance.

The formulation of quantum TGD in terms of the Kähler-Dirac action requires the ad-
dition of CP and T breaking Chern-Simons term and corresponding Chern-Simons Dirac
term to partonic orbits such that it cancels the similar contribution coming from Kähler ac-
tion. Chern-Simons Dirac term fixed by superconformal symmetry and gives rise to massless
fermionic propagators at the boundaries of string world sheets. This seems to be a natural
first principle explanation for the CP breaking as it manifests at the level of CKM matrix
and perhaps also in breaking of matter antimatter asymmetry.

6. The experimental arrangement quite concretely splits the quantum state to a quantum su-
perposition of space-time sheets such that each eigenstate of the measured observables in
the superposition corresponds to different space-time sheet already before the realization of
state function reduction. This relates interestingly to the question whether state function
reduction really occurs or whether only a branching of wave function defined by WCW spinor
field takes place as in multiverse interpretation in which different branches correspond to dif-
ferent observers. TGD inspired theory consciousness requires that state function reduction
takes place. Maybe multiversalist might be able to find from this picture support for his own
beliefs.

7. One can argue that “free will” appears not only at the level of quantum jumps but also as the
possibility to select the observables appearing in the Kähler-Dirac action dictating in turn the
Kähler function defining the Kähler metric of WCW representing the “laws of physics”. This
need not to be the case. The choice of CD fixes M2 and the geodesic sphere S2: this does
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not fix completely the choice of the quantization axis but by isometry invariance rotations
and color rotations do not affect Kähler function for given CD and for a given type of Cartan
algebra. In M4 degrees of freedom the possibility to select the observables in two manners
corresponding to linear and cylindrical Minkowski coordinates could imply that the resulting
Kähler functions are different. The corresponding Kähler metrics do not differ if the real
parts of the Kähler functions associated with the two choices differ by a term f(Z) + f(Z),
where Z denotes complex coordinates of WCW , the Kähler metric remains the same. The
function f can depend also on zero modes. If this is the case then one can allow in given CD
superpositions of WCW spinor fields for which the measurement interactions are different.
This condition is expected to pose non-trivial constraints on the measurement action and
quantize coupling parameters appearing in it.

4.4 How To Calculate Dirac Determinant?

If the modes of the Kähler-Dirac equation (or Kähler-Dirac equation) are localized to 2-D string
world sheets as the well-definedness of em charge eigenvalue for the modes of induced spinor field
strongly suggests, the definition of Dirac determinant could be rather simple as following argument
shows.

The modes of Kähler-Dirac operator (Kähler-Dirac operator) are localized at string world sheets
and are holomorphic spinors. K-D operator annihilates these modes so that Dirac determinant
must be assigned with the 1-D Dirac operator associated with the induced metric at the light-like
partonic orbits with vanishing metric determinant g4.

The spectrum of light-like 8-momenta pk is determined by the boundary conditions for 1-D
Dirac operator at the ends of CD and periodic boundary conditions is one natural possibility. As
in massless QFTs Dirac determinant could be identified as a square root of the product of - now
8-D - mass squared eigenvalues p2. If the spectrum is unbounded, a regularization must be used.
Finite measurement resolution means UV and IR cutoffs and would make Dirac determinant finite.
Finite IR resolution would be due to the fact that only space-time surfaces within CD and thus
having finite size scale are considered. UV resolution would be due to the lower limit on the size
of sub-CDs.

One can however define Dirac determinant directly as the product of the generalized eigenvalues
pkγk or as product of octonions in quaternionic sub-algebra defined by pk. For

The full Dirac determinant would be product of Dirac determinants associated with various
string world sheets. Needless to say that this is an enormous calculational advantage. If Dirac
determinant identified in this manner reduces to exponent of Kähler action for preferred extremal
this definition of Dirac determinant should give exponent of Kähler function reducing by weak form
of electric-magnetic duality to exponent of Chern-Simons terms associated with the space-like ends
of the space-time surface. Euclidian and Minkowskian regions would give contributions different
by a phase factor

√
−1. The reduction of determinant to exponent of Chern-Simons terms would

guarantee its finiteness.
Before trying to calculate Dirac determinant it is good to try to guess what the reduction to

Chern Simons action could give as a result. This kind of guesses are of course highly speculative
but nothing prevents from trying.

1. Chern Simons action to which Kähler action is expected to reduce for the preferred extremals
should be expressible in terms of invariants associated with string world sheets. By the
generalizaton of AdS/CFT duality the action in question should be proportional to the area
of the string world sheet in the effective metric defined by the anti-commutators of Kähler-
Dirac gamma matrices at string world sheet.

2. The arguent about finite measurement resolution can be of course criticized. An alternative
argument relies on idea that the sum over logariths of eigenvalues reduces to integral using as
measure the transversal induced Kähler form JT and the magnetic flux J over string world
sheet. This conforms with the existence of slicing by string world sheets labelled by points
of partonic 2-surface.
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5 Quantum Criticality And Kähler-Dirac Action

The precise mathematical formulation of quantum criticality has remained one of the basic chal-
lenges of quantum TGD. The belief has been that the existence of conserved current for Kähler-
Dirac equation are possible if Kähler action is critical for the 3-surface in question in the sense that
the deformation in question corresponds to vanishing of second variation of Kähler action. The
vanishing of the second variation states that the deformation of the Kähler-Dirac gamma matrix
is divergence free just like the Kähler-Dirac gamma matrix itself and is therefore very natural.

2-D conformal invariance accompanies 2-D criticality and allows to satisfy these conditions for
spinor modes localized at 2-D surfaces - string world sheets and possibly also partonic 2-surfaces.
This localization is in the generic case forced by the conditions that em charge is well-defined for the
spinor modes: this requires that classical W fields vanish and also the vanishing of classical Z0 field
is natural -at least above weak scale. Only 2 Kähler-Dirac gamma matrices can be non-vanishing
and this is possible only for Kähler-Dirac action.

5.1 What Quantum Criticality Could Mean?

Quantum criticality is one of the basic guiding principles of Quantum TGD. What it means math-
ematically is however far from clear and one can imagine several meanings for it.

1. What is obvious is that quantum criticality implies quantization of Kähler coupling strength
as a mathematical analog of critical temperature so that the theory becomes mathematically
unique if only single critical temperature is possible. Physically this means the presence of
long range fluctuations characteristic for criticality and perhaps assignable to the effective
hierarchy of Planck constants having explanation in terms of effective covering spaces of the
imbedding space. This hierarchy follows from the vacuum degeneracy of Kähler action, which
in turn implies 4-D spin-glass degeneracy. It is easy to interpret the degeneracy in terms of
criticality.

2. At more technical level one would expect criticality to correspond to deformations of a given
preferred extremal defining a vanishing second variation of Kähler Khler function or Kähler
action.

(a) For Kähler function this criticality is analogous to thermodynamical criticality. The
Hessian matrix defined by the second derivatives of free energy or potential function
becomes degenerate at criticality as function of control variables which now would be
naturally zero modes not contribution to Kähler metric of WCW but appearing as
parameters in it. The bevavior variables correspond to quantum fluctuating degrees of
freedom and according to catastrophe theory a big change can in quantum fluctuating
degrees of freedom at criticality for zero modes. This would be control of quantum
state by varying classical variables. Cusp catastrophe is standard example of this. One
can imagined also a situation in which the roles of zero modes and behavior variables
change and big jump in the values of zero modes is induced by small variation in behavior
variables. This would mean quantum control of classical variables.

(b) Zero modes controlling quantum fluctuating variables in Kähler function would cor-
respond to vanishing of also second derivatives of potential function at extremum in
certain directions so that the matrix defined by second derivatives does not have max-
imum rank. Entire hierarchy of criticalities is expected and a good finite-dimensional
model is provided by the catastrophe theory of Thom [A2]. Cusp catastrophe [A1] is
the simplest catastrophe one can think of, and here the folds of cusp where discontinu-
ous jump occurs correspond to criticality with respect to one control variable and the
tip to criticality with respect to both control variables.

3. Quantum criticality makes sense also for Kähler action.

(a) Now one considers space-time surface connecting which 3-surfaces at the boundaries of
CD. The non-determinism of Kähler action allows the possibility of having several space-
time sheets connecting the ends of space-time surface but the conditions that classical

http://en.wikipedia.org/wiki/Catastrophe_theory#Cusp_catastrophe
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charges are same for them reduces this number so that it could be finite. Quantum
criticality in this sense implies non-determinism analogous to that of critical systems
since preferred extremals can co-incide and suffer this kind of bifurcation in the interior
of CD. This quantum criticality can be assigned to the hierarchy of Planck constants and
the integer n in heff = n× h [K4] corresponds to the number of degenerate space-time
sheets with same Kähler action and conserved classical charges.

(b) Also now one expects a hierarchy of criticalities and and since criticality and confor-
mal invariance are closely related, a natural conjecture is that the fractal hierarchy of
sub-algebras of conformal algebra isomorphic to conformal algebra itself and having
conformal weights coming as multiples of n corresponds to the hierarchy of Planck con-
stants. This hierarchy would define a hierarchy of symmetry breakings in the sense that
only the sub-algebra would act as gauge symmetries.

(c) The assignment of this hierarchy with super-symplectic algebra having conformal struc-
ture with respect to the light-like radial coordinate of light-cone boundary looks very
attractive. An interesting question is what is the role of the super-conformal alge-
bra associated with the isometries of light-cone boundary R+ × S2 which are confor-
mal transformations of sphere S2 with a scaling of radial coordinate compensating the
scaling induced by the conformal transformation. Does it act as dynamical or gauge
symmetries?

4. I have discussed what criticality could mean for Kähler-Dirac action [K15].

(a) I have conjectured that it leads to the existence of additional conserved currents defined
by the variations which do not affect the value of Kähler action. These arguments are
far from being mathematically rigorous and the recent view about the solutions of the
Kähler-Dirac equation predicting that the spinor modes are restricted to 2-D string
world sheets requires a modification of these arguments.

(b) The basic challenge is to understand the mechanism making this kind of currents con-
served: the same challenge is met already in the case of isometries since imbedding
space coordinates appear as parameters in Kähler-Dirac action. Kähler-Dirac equation
is satisfied if the first variation of the canonical momentum densities contracted with the
imbedding space gamma matrices annihilates the spinor mode. Situation is analogous
to massless Dirac equation: it does not imply the vanishing of four-momentum, only the
vanishing of mass. One obtains conserved fermion current associated with deformations
only if the deformation of the Kähler-Dirac gamma matrix is divergenceless just like the
Kähler-Dirac gamma matrix itself. This conditions requires the vanishing of the second
variation of Kähler action.

(c) It is far from obvious that these conditions can be satisfied. The localization of the
spinor modes to string world sheets or partonic 2-surfaces guaranteeing in the generic
case that em charge is well-defined for spinor modes implies holomorphy allowing to
formulate current conservation for the deformations of the space-time surface for second
quantized induced spinor field. The crux is that the deformation respects the holomor-
phy properties of the Kähler-Dirac gamma matrices at string world sheet and thus does
not mix Γz with Γz. The deformation of Γz has only z-component and also annihilates
the holomorphic spinor.

This mechanism is possible only for Kähler-Dirac action since the Kähler-Dirac gamma
matrices in directions orthogonal to the 2-surface must vanish and this is not possible
for other actions. This also means that energy momentum tensor has rank 2 as a matrix.
Cosmic string solutions are an exception since in this case CP2 projection of space-time
surface is 2-D and conditions guaranteing vanishing of classical W fields can be satisfied
without the restriction to 2-surface.

The vacuum degeneracy of Kähler action strongly suggests that the number of critical de-
formations is always infinite and that these deformations define an infinite inclusion hierarchy
of super-conformal algebras. This inclusion hierarchy would correspond to a fractal hierarchy of
breakings of super-conformal symmetry generalizing the symmetry breaking hierarchies of gauge
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theories. These super-conformal inclusion hierarchies would realize the inclusion hierarchies for
hyper-finite factors of type II1.

5.2 Quantum Criticality And Fermionic Representation Of Conserved
Charges Associated With Second Variations Of Kähler Action

It is rather obvious that TGD allows a huge generalizations of conformal symmetries. The de-
velopment of the understanding of conservation laws has been however slow. Kähler-Dirac action
provides excellent candidates for quantum counterparts of Noether charges. The problem is that
the imbedding space coordinates are in the role of classical external fields and induces spinor fields
are second quantized so that it is not at all clear whether one obtains conserved charges.

5.2.1 What does the conservation of the fermionic Noether current require?

The obvious anser to the question of the title is that the conservation of the fermionic current
requires the vanishing of the first variation of Kähler-Dirac action with respect to imbedding space
coordinates. This is certainly true but need not mean vanishing of the second variation of Kähler
action as thought first. Hence fermionic conserved currents might be obtained for much more
general variations than critical ones.

1. The Kähler-Dirac action assigns to a deformation of the space-time surface a conserved
charge expressible as bilinears of fermionic oscillator operators only if the first variation of
the Kähler-Dirac action under this deformation vanishes.

The vanishing of the first variation for the Kähler-Dirac action is equivalent with the vanishing
of the second variation for the Kähler action. This can be seen by the explicit calculation of
the second variation of the Kähler-Dirac action and by performing partial integration for the
terms containing derivatives of Ψ and Ψ to give a total divergence representing the difference
of the charge at upper and lower boundaries of the causal diamond plus a four-dimensional
integral of the divergence term defined as the integral of the quantity

∆SD = ΨΓkDαJ
α
k Ψ ,

Jαk =
∂2LK
∂hkα∂h

l
β

δhkβ +
∂2LK
∂hkα∂h

l
δhl . (5.1)

Here hkβ denote partial derivative of the imbedding space coordinates with respect to space-
time coordinates. ∆SD vanishes if this term vanishes:

DαJ
α
k = 0 .

The condition states the vanishing of the second variation of Kähler action. This can of course
occur only for preferred deformations of X4. One could consider the possibility that these
deformations vanish at light-like 3-surfaces or at the boundaries of CD. Note that covariant
divergence is in question so that Jαk does not define conserved classical charge in the general
case.

2. This condition is however un-necessarily strong. It is enough that that the deformation of
Dirac operator anihilates the spinor mode, which can also change in the deformation. It
must be possible to compensate the change of the covariant derivative in the deformation
by a gauge transformation which requires that deformations act as gauge transformations on
induce gauge potentials. This gives additional constraint and strongly suggests Kac-Moody
type algebra for the deformations. Conformal transformations would satisfy this constraint
and are suggested by quantum criticality.
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3. It is essential that the Kähler-Dirac equation holds true so that the Kähler-Dirac action
vanishes: this is needed to cancel the contribution to the second variation coming from the
determinant of the induced metric. The condition that the Kähler-Dirac equation is satisfied
for the deformed space-time surface requires that also Ψ suffers a transformation determined
by the deformation. This gives

δΨ = − 1

D
× ΓkJαk Ψ . (5.2)

Here 1/D is the inverse of the Kähler-Dirac operator defining the counterpart of the fermionic
propagator.

4. The fermionic conserved currents associated with the deformations are obtained from the
standard conserved fermion current

Jα = ΨΓαΨ . (5.3)

Note that this current is conserved only if the space-time surface is extremal of Kähler action:
this is also needed to guarantee Hermiticity and same form for the Kähler-Dirac equation for
Ψ and its conjugate as well as absence of mass term essential for super-conformal invariance.
Note also that ordinary divergence rather only covariant divergence of the current vanishes.

The conserved currents are expressible as sums of three terms. The first term is obtained by
replacing Kähler-Dirac gamma matrices with their increments in the deformation keeping Ψ
and its conjugate constant. Second term is obtained by replacing Ψ with its increment δΨ.
The third term is obtained by performing same operation for δΨ.

Jα = ΨΓkJαk Ψ + ΨΓ̂αδΨ + δΨΓ̂αΨ . (5.4)

These currents provide a representation for the algebra defined by the conserved charges
analogous to a fermionic representation of Kac-Moody algebra.

5. Also conserved super charges corresponding to super-conformal invariance are obtained. The
first class of super currents are obtained by replacing Ψ or Ψ right handed neutrino spinor
or its conjugate in the expression for the conserved fermion current and performing the
above procedure giving two terms since nothing happens to the covariantly constant right
handed-neutrino spinor. Second class of conserved currents is defined by the solutions of
the Kähler-Dirac equation interpreted as c-number fields replacing Ψ or Ψ and the same
procedure gives three terms appearing in the super current.

6. The existence of vanishing of second variations is analogous to criticality in systems defined
by a potential function for which the rank of the matrix defined by second derivatives of
the potential function vanishes at criticality. Quantum criticality becomes the prerequisite
for the existence of quantum theory since fermionic anti-commutation relations in principle
can be fixed from the condition that the algebra in question is equivalent with the algebra
formed by the vector fields defining the deformations of the space-time surface defining second
variations. Quantum criticality in this sense would also select preferred extremals of Kähler
action as analogs of Bohr orbits and the the spectrum of preferred extremals would be more
or less equivalent with the expected existence of infinite-dimensional symmetry algebras.

It is far from obvious that the criticality conditions or even the weaker conditions guaranteing
the existence of (say) isometry charges can be satisfied. It seems that the restriction of spinor
modes to 2-D surfaces - string world sheets and possibly also partonic 2-surfaces - implied by the
condition that em charge is well-define for them, is the manner to achieve this. The reason is
that conformal invariance allows complexification of the Kähler-Dirac gamma matrices and allows
to construct spinor modes as holomorphic modes and their conjugates. Holomorphy reduces K-
D equation to algebraic condition that Γz annihilates the spinor mode. If this is true also the
deformation of Γz then the existince of conserved current follows. It is essential that only two
Kähler-Dirac gamma matrices are non-vanishing and this is possible only for Kähler-Dirac action.
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5.2.2 About the general structure of the algebra of conserved charges

Some general comments about the structure of the algebra of conserved charges are in order.

1. Any Cartan algebra of the isometry group P × SU(3) (there are two types of them for P
corresponding to linear and cylindrical Minkowski coordinates) defines critical deformations
(one could require that the isometries respect the geometry of CD). The corresponding second
order charges for Kähler action are conserved but vanish since the corresponding conjugate
coordinates are cyclic for the Kähler metric and Kähler form so that the conserved current is
proportional to the gradient of a Killing vector field which is constant in these coordinates.

2. Contrary to the original conclusion, the corresponding fermionic charges expressible as fermionic
bilinears are first order in deformation and do not vanish! Four-momentum and color quan-
tum numbers are defined for Kähler action as classical conserved quantities and for Kähler-
Dirac action as quantal charges.

5.2.3 Critical manifold is infinite-dimensional for Kähler action

Some examples might help to understand what is involved.

1. The action defined by four-volume gives a first glimpse about what one can expect. In this
case Kähler-Dirac gamma matrices reduce to the induced gamma matrices. Second variations
satisfy d’Alembert type equation in the induced metric so that the analogs of massless fields
are in question. Mass term is present only if some dimensions are compact. The vanishing
of excitations at light-like boundaries is a natural boundary condition and might well imply
that the solution spectrum could be empty. Hence it is quite possible that four-volume action
leads to a trivial theory.

2. For the vacuum extremals of Kähler action the situation is different. There exists an infinite
number of second variations and the classical non-determinism suggests that deformations
vanishing at the light-like boundaries exist. For the canonical imbedding of M4 the equation
for second variations is trivially satisfied. If the CP2 projection of the vacuum extremal is one-
dimensional, the second variation contains a non-vanishing term and an equation analogous
to massless d’Alembert equation for the increments of CP2 coordinates is obtained. Also
for the vacuum extremals of Kähler action with 2-D CP2 projection all terms involving
induced Kähler form vanish and the field equations reduce to d’Alembert type equations for
CP2 coordinates. A possible interpretation is as the classical analog of Higgs field. For the
deformations of non-vacuum extremals this would suggest the presence of terms analogous
to mass terms: these kind of terms indeed appear and are proportional to δsk. M4 degrees
of freedom decouple completely and one obtains QFT type situation.

3. The physical expectation is that at least for the vacuum extremals the critical manifold is
infinite-dimensional. The notion of finite measurement resolution suggests infinite hierarchies
of inclusions of hyper-finite factors of type II1 possibly having interpretation in terms of
inclusions of the super conformal algebras defined by the critical deformations.

4. The properties of Kähler action give support for this expectation. The critical manifold is
infinite-dimensional in the case of vacuum extremals. Canonical imbedding of M4 would
correspond to maximal criticality analogous to that encountered at the tip of the cusp catas-
trophe. The natural guess would be that as one deforms the vacuum extremal the previously
critical degrees of freedom are transformed to non-critical ones. The dimension of the critical
manifold could remain infinite for all preferred extremals of the Kähler action. For instance,
for cosmic string like objects any complex manifold of CP2 defines cosmic string like objects
so that there is a huge degeneracy is expected also now. For CP2 type vacuum extremals
M4 projection is arbitrary light-like curve so that also now infinite degeneracy is expected
for the deformations.

This leads to the conjecture that the critical deformations correspond to sub-algebras of super-
conformal algebras with conformal weights coming as integer multiples of fixed integer m. One
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would have infinite hierarchy of breakings of conformal symmetry labelled by m. The super-
conformal algebras would be effectively m-dimensional. Since all commutators with the critical
sub-algebra would create zero energy states. In ordinary conformal field theory one have maximal
criticality corresponding to m = 1.

5.2.4 Critical super-algebra and zero modes

The relationship of the critical super-algebra to WCW geometry is interesting.

1. The vanishing of the second variation plus the identification of Kähler function as a Kähler
action for preferred extremals means that the critical variations are orthogonal to all defor-
mations of the space-time surface with respect to the WCW metric.

The original expectation was that critical deformations correspond to zero modes but this
interpretation need not be correct since critical deformations can leave 3-surface invariant
but affect corresponding preferred extremal: this would conform with the non-deterministic
character of the dynamics which is indeed the basic signature of criticality. Rather, criti-
cal deformations are limiting cases of ordinary deformations acting in quantum fluctuating
degrees of freedom.

This conforms with the fact that WCW metric vanishes identically for canonically imbedded
M4 and that Kähler action has fourth order terms as first non-vanishing terms in perturbative
expansion (for Kähler-Dirac the expansion is quadratic in deformation).

Therefore the super-conformal algebra associated with the critical deformations has genuine
physical content.

2. Since the action of X4 local Hamiltonians of δM4
×CP2 corresponds to the action in quan-

tum fluctuating degrees of freedom, critical deformations cannot correspond to this kind of
Hamiltonians.

3. The notion of finite measurement resolution suggests that the degrees of freedom which are
below measurement resolution correspond to vanishing gauge charges. The sub-algebras of
critical super-conformal algebra for which charges annihilate physical states could correspond
to this kind of gauge algebras.

4. The conserved super charges associated with the vanishing second variations cannot give
WCW metric as their anti-commutator. This would also lead to a conflict with the effective
2-dimensionality stating that WCW line-element is expressible as sum of contribution coming
from partonic 2-surfaces as also with fermionic anti-commutation relations.

5.2.5 Connection with quantum criticality

The notion of quantum criticality of TGD Universe was originally inspired by the question how
to make TGD unique if Kähler function for WCW is defined by the Kähler action for a preferred
extremal assignable to a given 3-surface. Vacuum functional defined by the exponent of Kähler
function is analogous to thermodynamical weight and the obviou idea with Kähler coupling strength
taking the role of temperature. The obvious idea was that the value of Kähler coupling strength
is analogous to critical temperature so that TGD would be more or less uniquely defined.

To understand the delicacies it is convenient to consider various variations of Kähler action
first.

1. The variation can leave 3-surface invariant but modify space-time surface such that Kähler
action remains invariant. In this case infinitesimal deformation reduces to a diffeomorphism
at space-like 3-surface and perhaps also at light-like 3-surfaces. In this case the correspon-
dence between X3 and X4(X3) would not be unique and one would have non-deterministic
dynamics characteristic for critical systems. This criticality would correspond to criticality of
Kähler action at X3. Note that the original working hypothesis was that X4(X3) is unique.
The failure of the strict classical determinism implying spin glass type vacuum degeneracy
indeed suggets that this is the case.
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2. The variation could act on zero modes which do not affect Kähler metric which corresponds to
(1, 1) part of Hessian in complex coordinates for WCW . Only the zero modes characterizing
3-surface appearing as parameters in the metric WCW would be affected and the result would
be a generalization of conformal transformation. Kähler function would change but only due
to the change in zero modes. These transformations do not seem to correspond to critical
transformations since Kähler function changes.

3. The variation could act on 3-surface both in zero modes and dynamical degrees of freedom
represented by complex coordinates. It would of course affect also the space-time surface.
Criticality for Kähler function would mean that Kähler metric has zero modes at X3 meaning
that (1, 1) part of Hessian is degenerate. This could mean that in the vicinity of X3 the
Kähler form has non-definite signature: physically this is unacceptable since inner product
in Hilbert space would not be positive definite.

Critical transformations might relate closely to the coset space decomposition of WCW to a
union of coset spaces G/H labelled by zero modes.

1. The critical deformations leave 3-surface X3 invariant as do also the transformations of H
associated with X3. If H affects X4(X3) and corresponds to critical transformations then
critical transformation would extend WCW to a bundle for which 3-surfaces would be base
points and preferred extremals X4(X3) would define the fiber. Gauge invariance with respect
to H would generalize the assumption that X4(X3) is unique.

2. Critical deformations could correspond to H or sub-group of H (which dependes on X3).
For other 3-surfaces than X3 the action of H is non-trivial as the case of CP2 = SU(3)/U(2)
makes easy to understand.

3. A possible identification of Lie-algebra of H is as a sub-algebra of Virasoro algebra associated
with the symplectic transformations of δM4 × CP2 and acting as diffeomorphisms for the
light-like radial coordinate of δM4

+. The sub-algebras of Virasoro algebra have conformal
weights coming as integer multiplies of a given conformal weight m and form inclusion hier-
archies suggesting a direct connection with finite measurement resolution realized in terms of
inclusions of hyperfinite factors of type II1. For m > 1 one would have breaking of maximal
conformal symmetry. The action of these Virasoro algebra on symplectic algebra would make
the corresponding sub-algebras gauge degrees of freedom so that the number of symplectic
generators generating non-gauge transformations would be finite. This result is not surpris-
ing since also for 2-D critical systems criticality corresponds to conformal invariance acting
as local scalings.

The vanishing of the second variation for some deformations means that the system is critical,
in the recent case quantum critical. Basic example of criticality is bifurcation diagram for cusp
catastrophe. Quantum criticality realized as the vanishing of the second variation gives hopes about
a more or less unique identification of preferred extremals and considered alternative identifications
such as absolute minimization of Kähler action which is just the opposite of criticality.

One must be very cautious here: there are two criticalities: one for the extremals of Kähler
action with respect to deformations of four-surface and second for the Kähler function itself with
respect to deformations of 3-surface: these criticalities are not equivalent since in the latter case
variation respects preferred extremal property unlike in the first case.

1. The criticality for preferred extremals would make 4-D criticality a property of all physical
systems.

2. The criticality for Kähler function would be 3-D and might hold only for very special systems.
In fact, the criticality means that some eigenvalues for the Hessian of Kähler function vanish
and for nearby 3-surfaces some eigenvalues are negative. On the other hand the Kähler
metric defined by (1, 1) part of Hessian in complex coordinates must be positive definite.
Thus criticality might imply problems.

This allows and suggests non-criticality of Kähler function coming from Kähler action for
Euclidian space-time regions: this is mathematically the simplest situation since in this case



5.2 Quantum Criticality And Fermionic Representation Of Conserved Charges
Associated With Second Variations Of Kähler Action 35

there are no zero modes causing troubles in Gaussian approximation to functional integral.
The Morse function coming from Kähler action in Minkowskian as imaginary contribution
analogous to that appearing in path integral could be critical and allow non-definite signature
in principle. In fact this is expected by the defining properties of Morse function.

3. The almost 2-dimensionality implied by strong form of holography suggests that the interior
degrees of freedom of 3-surface can be regarded almost gauge degrees of freedom and that this
relates directly to generalised conformal symmetries associated with symplectic isometries of
WCW . These degrees of freedom are not critical in the sense inspired by G/H decomposition.
The only plausible interaction seems to be that these degrees of freedom correspond to
deformations in zero modes.

Both the super-symmetry of DK and conservation Dirac Noether currents for Kähler-Dirac
action have thus a connection with quantum criticality.

1. Finite-dimensional critical systems defined by a potential function V (x1, x2, ..) are character-
ized by the matrix defined by the second derivatives of the potential function and the rank of
system classifies the levels in the hierarchy of criticalities. Maximal criticality corresponds to
the complete vanishing of this matrix. Thom’s catastrophe theory classifies these hierarchies,
when the numbers of behavior and control variables are small (smaller than 5). In the recent
case the situation is infinite-dimensional and the criticality conditions give additional field
equations as existence of vanishing second variations of Kähler action.

2. The vacuum degeneracy of Kähler action allows to expect that this kind infinite hierarchy
of criticalities is realized. For a general vacuum extremal with at most 2-D CP2 projection
the matrix defined by the second variation vanishes because Jαβ = 0 vanishes and also the

matrix (Jαk + J α
k )(Jβl + J β

l ) vanishes by the antisymmetry Jαk = −J α
k .

The formulation of quantal version of Equivalence Principle (EP) in string picture demon-
strates that the conservation of of fermionic Noether currents defining gravitational four-
momentum and other Poincare quantum numbers requires that the deformation of the
Kähler-Dirac equation obtained by replacing Kähler-Dirac gamma matrices with their defor-
mations is also satisfied. Holomorphy can guarantee this. The original wrong conclusion was
that this condition is equivalent with much stronger condition stating the vanishing of the
second variation of Kähler action, which it is not. There is analogy for this: massless Dirac
equation does not imply the vanishing of four-momentum.

3. Conserved bosonic and fermionic Noether charges would characterize quantum criticality. In
particular, the isometries of the imbedding space define conserved currents represented in
terms of the fermionic oscillator operators if the second variations defined by the infinitesi-
mal isometries vanish for the Kähler-Dirac action. For vacuum extremals the dimension of
the critical manifold is infinite: maybe there is hierarchy of quantum criticalities for which
this dimension decreases step by step but remains always infinite. This hierarchy could
closely relate to the hierarchy of inclusions of hyper-finite factors of type II1. Also the
conserved charges associated with super-symplectic and Super Kac-Moody algebras would
require infinite-dimensional critical manifold defined by the spectrum of second variations.

4. Phase transitions are characterized by the symmetries of the phases involved with the tran-
sitions, and it is natural to expect that dynamical symmetries characterize the hierarchy of
quantum criticalities. The notion of finite quantum measurement resolution based on the
hierarchy of Jones inclusions indeed suggests the existence of a hierarchy of dynamical gauge
symmetries characterized by gauge groups in ADE hierarchy [K4] with degrees of freedom
below the measurement resolution identified as gauge degrees of freedom.

5. Does this criticality have anything to do with the criticality against the phase transitions
changing the value of Planck constant? If the geodesic sphere S2

I for which induced Kähler
form vanishes corresponds to the back of the CP2 book (as one expects), this could be the
case. The homologically non-trivial geodesic sphere S12II is as far as possible from vacuum
extremals. If it corresponds to the back of CP2 book, cosmic strings would be quantum
critical with respect to phase transition changing Planck constant. They cannot however
correspond to preferred extremals.
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5.3 Preferred Extremal Property As Classical Correlate For Quantum
Criticality, Holography, And Quantum Classical Correspondence

The Noether currents assignable to the Kähler-Dirac equation are conserved only if the first vari-
ation of the Kähler-Dirac operator DK defined by Kähler action vanishes. This is equivalent with
the vanishing of the second variation of Kähler action -at least for the variations corresponding
to dynamical symmetries having interpretation as dynamical degrees of freedom which are below
measurement resolution and therefore effectively gauge symmetries.

The vanishing of the second variation in interior of X4(X3
l ) is what corresponds exactly to

quantum criticality so that the basic vision about quantum dynamics of quantum TGD would
lead directly to a precise identification of the preferred extremals. Something which I should have
noticed for more than decade ago! The question whether these extremals correspond to absolute
minima remains however open.

The vanishing of second variations of preferred extremals -at least for deformations representing
dynamical symmetries, suggests a generalization of catastrophe theory of Thom, where the rank of
the matrix defined by the second derivatives of potential function defines a hierarchy of criticalities
with the tip of bifurcation set of the catastrophe representing the complete vanishing of this matrix.
In the recent case this theory would be generalized to infinite-dimensional context. There are three
kind of variables now but quantum classical correspondence (holography) allows to reduce the types
of variables to two.

1. The variations of X4(X3
l ) vanishing at the intersections of X4(X3

l ) with the light-like bound-
aries of causal diamonds CD would represent behavior variables. At least the vacuum ex-
tremals of Kähler action would represent extremals for which the second variation vanishes
identically (the “tip” of the multi-furcation set).

2. The zero modes of Kähler function would define the control variables interpreted as classical
degrees of freedom necessary in quantum measurement theory. By effective 2-dimensionality
(or holography or quantum classical correspondence) meaning that the configuration space
metric is determined by the data coming from partonic 2-surfaces X2 at intersections of X3

l

with boundaries of CD, the interiors of 3-surfaces X3 at the boundaries of CDs in rough sense
correspond to zero modes so that there is indeed huge number of them. Also the variables
characterizing 2-surface, which cannot be complexified and thus cannot contribute to the
Kähler metric of WCW represent zero modes. Fixing the interior of the 3-surface would
mean fixing of control variables. Extremum property would fix the 4-surface and behavior
variables if boundary conditions are fixed to sufficient degree.

3. The complex variables characterizing X2 would represent third kind of variables identified as
quantum fluctuating degrees of freedom contributing to the WCW metric. Quantum classical
correspondence requires 1-1 correspondence between zero modes and these variables. This
would be essentially holography stating that the 2-D “causal boundary” X2 of X3(X2) codes
for the interior. Preferred extremal property identified as criticality condition would realize
the holography by fixing the values of zero modes once X2 is known and give rise to the
holographic correspondence X2 → X3(X2). The values of behavior variables determined by
extremization would fix then the space-time surface X4(X3

l ) as a preferred extremal.

4. Clearly, the presence of zero modes would be absolutely essential element of the picture.
Quantum criticality, quantum classical correspondence, holography, and preferred extremal
property would all represent more or less the same thing. One must of course be very cautious
since the boundary conditions at X3

l involve normal derivative and might bring in delicacies
forcing to modify the simplest heuristic picture.

5. There is a possible connection with the notion of self-organized criticality [B3] introduced to
explain the behavior of systems like sand piles. Self-organization in these systems tends to
lead “to the edge”. The challenge is to understand how system ends up to a critical state,
which by definition is unstable. Mechanisms for this have been discovered and based on
phase transitions occurring in a wide range of parameters so that critical point extends to
a critical manifold. In TGD Universe quantum criticality suggests a universal mechanism
of this kind. The criticality for the preferred extremals of Kähler action would mean that
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classically all systems are critical in well-defined sense and the question is only about the
degree of criticality. Evolution could be seen as a process leading gradually to increasingly
critical systems. One must however distinguish between the criticality associated with the
preferred extremals of Kähler action and the criticality caused by the spin glass like energy
landscape like structure for the space of the maxima of Kähler function.

5.4 Quantum Criticality And Electroweak Symmetries

In the following quantum criticali and electroweak symmetries are discussed for Kähler-Dirac ac-
tion.

5.4.1 What does one mean with quantum criticality?

Quantum criticality is one of the basic guiding principles of Quantum TGD. What it means math-
ematically is however far from clear and one can imagine several meanings for it.

1. What is obvious is that quantum criticality implies quantization of Kähler coupling strength
as a mathematical analog of critical temperature so that the theory becomes mathematically
unique if only single critical temperature is possible. Physically this means the presence of
long range fluctuations characteristic for criticality and perhaps assignable to the effective
hierarchy of Planck constants having explanation in terms of effective covering spaces of the
imbedding space. This hierarchy follows from the vacuum degeneracy of Kähler action, which
in turn implies 4-D spin-glass degeneracy. It is easy to interpret the degeneracy in terms of
criticality.

2. At more technical level one would expect criticality to corresponds to deformations of a given
preferred extremal defining a vanishing second variation of Kähler Khler function or Kähler
action.

(a) For Kähler function this criticality is analogous to thermodynamical criticality. The
Hessian matrix defined by the second derivatives of free energy or potential function
becomes degenerate at criticality as function of control variables which now would be
naturally zero modes not contribution to Kähler metric of WCW but appearing as
parameters in it. The bevavior variables correspond to quantum fluctuating degrees of
freedom and according to catastrophe theory a big change can in quantum fluctuating
degrees of freedom at criticality for zero modes. This would be control of quantum
state by varying classical variables. Cusp catastrophe is standard example of this. One
can imagined also a situation in which the roles of zero modes and behavior variables
change and big jump in the values of zero modes is induced by small variation in behavior
variables. This would mean quantum control of classical variables.

(b) Zero modes controlling quantum fluctuating variables in Kähler function would cor-
respond to vanishing of also second derivatives of potential function at extremum in
certain directions so that the matrix defined by second derivatives does not have max-
imum rank. Entire hierarchy of criticalities is expected and a good finite-dimensional
model is provided by the catastrophe theory of Thom [A2]. Cusp catastrophe [A1] is
the simplest catastrophe one can think of, and here the folds of cusp where discontinu-
ous jump occurs correspond to criticality with respect to one control variable and the
tip to criticality with respect to both control variables.

3. Quantum criticality makes sense also for Kähler action.

(a) Now one considers space-time surface connecting which 3-surfaces at the boundaries of
CD. The non-determinism of Kähler action allows the possibility of having several space-
time sheets connecting the ends of space-time surface but the conditions that classical
charges are same for them reduces this number so that it could be finite. Quantum
criticality in this sense implies non-determinism analogous to that of critical systems
since preferred extremals can co-incide and suffer this kind of bifurcation in the interior
of CD. This quantum criticality can be assigned to the hierarchy of Planck constants and

http://en.wikipedia.org/wiki/Catastrophe_theory#Cusp_catastrophe
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the integer n in heff = n× h [K4] corresponds to the number of degenerate space-time
sheets with same Kähler action and conserved classical charges.

(b) Also now one expects a hierarchy of criticalities and and since criticality and confor-
mal invariance are closely related, a natural conjecture is that the fractal hierarchy of
sub-algebras of conformal algebra isomorphic to conformal algebra itself and having
conformal weights coming as multiples of n corresponds to the hierarchy of Planck con-
stants. This hierarchy would define a hierarchy of symmetry breakings in the sense that
only the sub-algebra would act as gauge symmetries.

(c) The assignment of this hierarchy with super-symplectic algebra having conformal struc-
ture with respect to the light-like radial coordinate of light-cone boundary looks very
attractive. An interesting question is what is the role of the super-conformal alge-
bra associated with the isometries of light-cone boundary R+ × S2 which are confor-
mal transformations of sphere S2 with a scaling of radial coordinate compensating the
scaling induced by the conformal transformation. Does it act as dynamical or gauge
symmetries?

4. I have discussed what criticality could mean for Kähler-Dirac action [K15].

(a) I have conjectured that it leads to the existence of additional conserved currents defined
by the variations which do not affect the value of Kähler action. These arguments are
far from being mathematically rigorous and the recent view about the solutions of the
Kähler-Dirac equation predicting that the spinor modes are restricted to 2-D string
world sheets requires a modification of these arguments.

(b) The basic challenge is to understand the mechanism making this kind of currents con-
served: the same challenge is met already in the case of isometries since imbedding space
coordinates appear as parameters in Kähler-Dirac action. The existence of conserved
currents does not actually require the vanishing of the second variation of Kähler action
as claimed earlier. It is enough that the first variation of the canonical momentum
densities contracted with the imbedding space gamma matrices annihilates the spinor
mode. Situation is analogous to massless Dirac equation: it does not imply the van-
ishing of four-momentum, only the vanishing of mass. Hence conserved currents are
obtained also outside the quantum criticality.

(c) It is far from obvious that these conditions can be satisfied. The localization of the
spinor modes to string world sheets or partonic 2-surfaces guaranteeing in the generaic
case that em charge is well-defined for spinor modes implies holomorphy allowing to
formulate current conservation for currents associated with the deformations of the
space-time surface for second quantized induced spinor field. The crux is that the
deformation respects the holomorphy properties of the modified gamma matrices at
string world sheet and thus does not mix Γz with Γz. The deformation of Γz has only z-
component and also annihilates the holomorphic spinor. This mechanism is possible only
for Kähler-Dirac action since the Kähler-Dirac gamma matrices in directions orthogonal
to the 2-surface must vanish and this is not possible for other actions. This also means
that energy momentum tensor has rank 2 as matrix. Cosmic string solutions are an
exception since in this case CP2 projection of space-time surface is 2-D and conditions
guaranteing vanishing of classical W fields can be satisfied.

In the following these arguments are formulated more precisely. The unexpected result is that
critical deformations induce conformal scalings of the modified metric and electro-weak gauge
transformations of the induced spinor connection at X2. Therefore holomorphy brings in the
Kac-Moody symmetries associated with isometries of H (gravitation and color gauge group) and
quantum criticality those associated with the holonomies of H (electro-weak-gauge group) as ad-
ditional symmetries.

5.4.2 The variation of modes of the induced spinor field in a variation of space-time
surface respecting the preferred extremal property

Consider first the variation of the induced spinor field in a variation of space-time surface respecting
the preferred extremal property. The deformation must be such that the deformed Kähler-Dirac
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operator D annihilates the modified mode. By writing explicitly the variation of the Kähler-Dirac
action (the action vanishes by Kähler-Dirac equation) one obtains deformations and requiring its
vanishing one obtains

δΨ = D−1(δD)Ψ . (5.5)

D−1 is the inverse of the Kähler-Dirac operator defining the analog of Dirac propagator and δD
defines vertex completely analogous to γkδAk in gauge theory context. The functional integral
over preferred extremals can be carried out perturbatively by expressing δD in terms of δhk and
one obtains stringy perturbation theory around X2 associated with the preferred extremal defining
maximum of Kähler function in Euclidian region and extremum of Kähler action in Minkowskian
region (stationary phase approximation).

What one obtains is stringy perturbation theory for calculating n-points functions for fermions
at the ends of braid strands located at partonic 2-surfaces and representing intersections of string
world sheets and partonic 2-surfaces at the light-like boundaries of CDs. δD- or more precisely, its
partial derivatives with respect to functional integration variables - appear atthe vertices located
anywhere in the interior of X2 with outgoing fermions at braid ends. Bosonic propagators are
replaced with correlation functions for δhk. Fermionic propagator is defined by D−1.

After 35 years or hard work this provides for the first time a reasonably explicit formula for
the N-point functions of fermions. This is enough since by bosonic emergence [K9] these N-point
functions define the basic building blocks of the scattering amplitudes. Note that bosonic emergence
states that bosons corresponds to wormhole contacts with fermion and anti-fermion at the opposite
wormhole throats.

5.4.3 What critical modes could mean for the induced spinor fields?

What critical modes could mean for the induced spinor fields at string world sheets and partonic
2-surfaces. The problematic part seems to be the variation of the Kähler-Dirac operator since it
involves gradient. One cannot require that covariant derivative remains invariant since this would
require that the components of the induced spinor connection remain invariant and this is quite
too restrictive condition. Right handed neutrino solutions de-localized into entire X2 are however
an exception since they have no electro-weak gauge couplings and in this case the condition is
obvious: Kähler-Dirac gamma matrices suffer a local scaling for critical deformations:

δΓµ = Λ(x)Γµ . (5.6)

This guarantees that the Kähler-Dirac operator D is mapped to ΛD and still annihilates the modes
of νR labelled by conformal weight, which thus remain unchanged.

What is the situation for the 2-D modes located at string world sheets? The condition is obvious.
Ψ suffers an electro-weak gauge transformation as does also the induced spinor connection so that
Dµ is not affected at all. Criticality condition states that the deformation of the space-time surfaces
induces a conformal scaling of Γµ at X2. It might be possible to continue this conformal scaling of
the entire space-time sheet but this might be not necessary and this would mean that all critical
deformations induced conformal transformations of the effective metric of the space-time surface
defined by {Γµ,Γν} = 2Gµν . Thus it seems that effective metric is indeed central concept (recall
that if the conjectured quaternionic structure is associated with the effective metric, it might be
possible to avoid problem related to the Minkowskian signature in an elegant manner).

In fact, one can consider even more general action of critical deformation: the modes of the
induced spinor field would be mixed together in the infinitesimal deformation besides infinitesimal
electroweak gauge transformation, which is same for all modes. This would extend electroweak
gauge symmetry. Kähler-Dirac equation holds true also for these deformations. One might wonder
whether the conjectured dynamically generated gauge symmetries assignable to finite measurement
resolution could be generated in this manner.

The infinitesimal generator of a critical deformation JM can be expressed as tensor product of
matrix AM acting in the space of zero modes and of a generator of infinitesimal electro-weak gauge
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transformation TM (x) acting in the same manner on all modes: JM = AM ⊗ TM (x). AM is a spa-
tially constant matrix and TM (x) decomposes to a direct sum of left- and right-handed SU(2)×U(1)
Lie-algebra generators. Left-handed Lie-algebra generator can be regarded as a quaternion and
right handed as a complex number. One can speak of a direct sum of left-handed local quater-
nion qM,L and right-handed local complex number cM,R. The commutator [JM , JN ] is given by
[JM , JN ] = [AM , AN ]⊗{TM (x), TN (x)}+{AM , AN}⊗ [TM (x), TN (x)]. One has {TM (x), TN (x)} =
{qM,L(x), qN,L(x)} ⊕ {cM,R(x), cN,R(x)} and [TM (x), TN (x)] = [qM,L(x), qN,L(x)]. The commuta-
tors make sense also for more general gauge group but quaternion/complex number property might
have some deeper role.

Thus the critical deformations would induce conformal scalings of the effective metric and dy-
namical electro-weak gauge transformations. Electro-weak gauge symmetry would be a dynamical
symmetry restricted to string world sheets and partonic 2-surfaces rather than acting at the entire
space-time surface. For 4-D de-localized right-handed neutrino modes the conformal scalings of
the effective metric are analogous to the conformal transformations of M4 for N = 4 SYMs. Also
ordinary conformal symmetries of M4 could be present for string world sheets and could act as
symmetries of generalized Feynman graphs since even virtual wormhole throats are massless. An
interesting question is whether the conformal invariance associated with the effective metric is the
analog of dual conformal invariance in N = 4 theories.

Critical deformations of space-time surface are accompanied by conserved fermionic currents.
By using standard Noetherian formulas one can write

Jµi = ΨΓµδiΨ + δiΨΓµΨ . (5.7)

Here δΨi denotes derivative of the variation with respect to a group parameter labeled by i. Since
δΨi reduces to an infinitesimal gauge transformation of Ψ induced by deformation, these currents
are the analogs of gauge currents. The integrals of these currents along the braid strands at the
ends of string world sheets define the analogs of gauge charges. The interpretation as Kac-Moody
charges is also very attractive and I have proposed that the 2-D Hodge duals of gauge potentials
could be identified as Kac-Moody currents. If so, the 2-D Hodge duals of J would define the
quantum analogs of dynamical electro-weak gauge fields and Kac-Moody charge could be also
seen as non-integral phase factor associated with the braid strand in Abelian approximation (the
interpretation in terms of finite measurement resolution is discussed earlier).

One can also define super currents by replacing Ψ or Ψ by a particular mode of the induced
spinor field as well as c-number valued currents by performing the replacement for both Ψ or Ψ.
As expected, one obtains a super-conformal algebra with all modes of induced spinor fields acting
as generators of super-symmetries restricted to 2-D surfaces. The number of the charges which
do not annihilate physical states as also the effective number of fermionic modes could be finite
and this would suggest that the integer N for the supersymmetry in question is finite. This would
conform with the earlier proposal inspired by the notion of finite measurement resolution implying
the replacement of the partonic 2-surfaces with collections of braid ends.

Note that Kac-Moody charges might be associated with “long” braid strands connecting dif-
ferent wormhole throats as well as short braid strands connecting opposite throats of wormhole
contacts. Both kinds of charges would appear in the theory.

5.4.4 What is the interpretation of the critical deformations?

Critical deformations bring in an additional gauge symmetry. Certainly not all possible gauge
transformations are induced by the deformations of preferred extremals and a good guess is that
they correspond to holomorphic gauge group elements as in theories with Kac-Moody symmetry.
What is the physical character of this dynamical gauge symmetry?

1. Do the gauge charges vanish? Do they annihilate the physical states? Do only their positive
energy parts annihilate the states so that one has a situation characteristic for the represen-
tation of Kac-Moody algebras. Or could some of these charges be analogous to the gauge
charges associated with the constant gauge transformations in gauge theories and be there-
fore non-vanishing in the absence of confinement. Now one has electro-weak gauge charges
and these should be non-vanishing. Can one assign them to deformations with a vanishing
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conformal weight and the remaining deformations to those with non-vanishing conformal
weight and acting like Kac-Moody generators on the physical states?

2. The simplest option is that the critical Kac-Moody charges/gauge charges with non-vanishing
positive conformal weight annihilate the physical states. Critical degrees of freedom would not
disappear but make their presence known via the states labelled by different gauge charges
assignable to critical deformations with vanishing conformal weight. Note that constant
gauge transformations can be said to break the gauge symmetry also in the ordinary gauge
theories unless one has confinement.

3. The hierarchy of quantum criticalities suggests however entire hierarchy of electro-weak Kac-
Moody algebras. Does this mean a hierarchy of electro-weak symmetries breakings in which
the number of Kac-Moody generators not annihilating the physical states gradually increases
as also modes with a higher value of positive conformal weight fail to annihilate the physical
state?

The only manner to have a hierarchy of algebras is by assuming that only the generators
satisfying n mod N = 0 define the sub-Kac-Moody algebra annihilating the physical states
so that the generators with n mod N 6= 0 would define the analogs of gauge charges. I
have suggested for long time ago the relevance of kind of fractal hierarchy of Kac-Moody and
Super-Virasoro algebras for TGD but failed to imagine any concrete realization.

A stronger condition would be that the algebra reduces to a finite dimensional algebra in the
sense that the actions of generators Qn and Qn+kN are identical. This would correspond to
periodic boundary conditions in the space of conformal weights. The notion of finite mea-
surement resolution suggests that the number of independent fermionic oscillator operators
is proportional to the number of braid ends so that an effective reduction to a finite algebra
is expected.

Whatever the correct interpretation is, this would obviously refine the usual view about
electro-weak symmetry breaking.

These arguments suggests the following overall view. The holomorphy of spinor modes gives
rise to Kac-Moody algebra defined by isometries and includes besides Minkowskian generators
associated with gravitation also SU(3) generators associated with color symmetries. Vanishing
second variations in turn define electro-weak Kac-Moody type algebra.

Note that criticality suggests that one must perform functional integral over WCW by decom-
posing it to an integral over zero modes for which deformations of X4 induce only an electro-weak
gauge transformation of the induced spinor field and to an integral over moduli corresponding to
the remaining degrees of freedom.

5.5 The Emergence Of Yangian Symmetry And Gauge Potentials As
Duals Of Kac-Moody Currents

Yangian symmetry plays a key role in N = 4 super-symmetric gauge theories. What is special
in Yangian symmetry is that the algebra contains also multi-local generators. In TGD framework
multi-locality would naturally correspond to that with respect to partonic 2-surfaces and string
world sheets and the proposal has been that the Super-Kac-Moody algebras assignable to string
worlds sheets could generalize to Yangian.

Witten has written a beautiful exposition of Yangian algebras [B5]. Yangian is generated by
two kinds of generators JA and QA by a repeated formation of commutators. The number of
commutations tells the integer characterizing the multi-locality and provides the Yangian algebra
with grading by natural numbers. Witten describes a 2-dimensional QFT like situation in which
one has 2-D situation and Kac-Moody currents assignable to real axis define the Kac-Moody
charges as integrals in the usual manner. It is also assumed that the gauge potentials defined by
the 1-form associated with the Kac-Moody current define a flat connection:

∂µj
A
ν − ∂νjAν + [jAµ , j

A
ν ] = 0 . (5.8)
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This condition guarantees that the generators of Yangian are conserved charges. One can however
consider alternative manners to obtain the conservation.

1. The generators of first kind - call them JA - are just the conserved Kac-Moody charges. The
formula is given by

JA =

∫ ∞
−∞

dxjA0(x, t) . (5.9)

2. The generators of second kind contain bi-local part. They are convolutions of generators of
first kind associated with different points of string described as real axis. In the basic formula
one has integration over the point of real axis.

QA = fABC

∫ ∞
−∞

dx

∫ ∞
x

dyjB0(x, t)jC0(y, t)− 2

∫ ∞
−∞

jAx dx . (5.10)

These charges are indeed conserved if the curvature form is vanishing as a little calculation
shows.

How to generalize this to the recent context?

1. The Kac-Moody charges would be associated with the braid strands connecting two par-
tonic 2-surfaces - Strands would be located either at the space-like 3-surfaces at the ends
of the space-time surface or at light-like 3-surfaces connecting the ends. Kähler-Dirac equa-
tion would define Super-Kac-Moody charges as standard Noether charges. Super charges
would be obtained by replacing the second quantized spinor field or its conjugate in the
fermionic bilinear by particular mode of the spinor field. By replacing both spinor field and
its conjugate by its mode one would obtain a conserved c-number charge corresponding to an
anti-commutator of two fermionic super-charges. The convolution involving double integral
is however not number theoretically attractive whereas single 1-D integrals might make sense.

2. An encouraging observation is that the Hodge dual of the Kac-Moody current defines the ana-
log of gauge potential and exponents of the conserved Kac-Moody charges could be identified
as analogs for the non-integrable phase factors for the components of this gauge potential.
This identification is precise only in the approximation that generators commute since only in
this case the ordered integral P (exp(i

∫
Adx)) reduces to P (exp(i

∫
Adx)).Partonic 2-surfaces

connected by braid strand would be analogous to nearby points of space-time in its discretiza-
tion implying that Abelian approximation works. This conforms with the vision about finite
measurement resolution as discretization in terms partonic 2-surfaces and braids.

This would make possible a direct identification of Kac-Moody symmetries in terms of gauge
symmetries. For isometries one would obtain color gauge potentials and the analogs of
gauge potentials for graviton field (in TGD framework the contraction with M4 vierbein
would transform tensor field to 4 vector fields). For Kac-Moody generators corresponding to
holonomies one would obtain electroweak gauge potentials. Note that super-charges would
give rise to a collection of spartners of gauge potentials automatically. One would obtain a
badly broken SUSY with very large value of N defined by the number of spinor modes as
indeed speculated earlier [K5].

3. The condition that the gauge field defined by 1-forms associated with the Kac-Moody currents
are trivial looks unphysical since it would give rise to the analog of topological QFT with
gauge potentials defined by the Kac-Moody charges. For the duals of Kac-Moody currents
defining gauge potentials only covariant divergence vanishes implying that curvature form is

Fαβ = εαβ [jµ, j
µ] , (5.11)

so that the situation does not reduce to topological QFT unless the induced metric is diagonal.
This is not the case in general for string world sheets.
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4. It seems however that there is no need to assume that jµ defines a flat connection. Witten
mentions that although the discretization in the definition of JA does not seem to be possible,
it makes sense for QA in the case of G = SU(N) for any representation of G. For general
G and its general representation there exists no satisfactory definition of Q. For certain
representations, such as the fundamental representation of SU(N), the definition of QA is
especially simple. One just takes the bi-local part of the previous formula:

QA = fABC
∑
i<j

JBi J
C
j . (5.12)

What is remarkable that in this formula the summation need not refer to a discretized point
of braid but to braid strands ordered by the label i by requiring that they form a connected
polygon. Therefore the definition of JA could be just as above.

5. This brings strongly in mind the interpretation in terms of twistor diagrams. Yangian would
be identified as the algebra generated by the logarithms of non-integrable phase factors in
Abelian approximation assigned with pairs of partonic 2-surfaces defined in terms of Kac-
Moody currents assigned with the Kähler-Dirac action. Partonic 2-surfaces connected by
braid strand would be analogous to nearby points of space-time in its discretization. This
would fit nicely with the vision about finite measurement resolution as discretization in terms
partonic 2-surfaces and braids.

The resulting algebra satisfies the basic commutation relations

[
JA, JB

]
= fABC JC ,

[
JA, QB

]
= fABC QC . (5.13)

plus the rather complex Serre relations described in [B5].
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